

19-22 September 2016, Avignon

Modelling sulphur allocation and partitionning in winter oilseed rape (*Brassica napus* L.)

Emilie Poisson, PhD Student UMR 950 INRA-UCN EVA Université de Caen Normandie, France

Ecophysiologie Végétale, Agronomie & nutritions N,C,

UNIVERSITÉ CAEN NORMANDIE

Picardie Innovations Végétales, Enseignements et Recherches Technologiques

Brassicaceae family

Brassicaceae family : importance of S-molecules

Organoleptic properties (bitterness)

- Nutritional interests : Beneficial effects on human health
 - Glucosinolates : antibacterial, anticarcinogenic, antioxidant and anti-inflammatory properties
 - Methiine (SMCSO) : lipid and cholesterol lowering effects, antidiabetic, antioxidant and antimutagen properties.

Brassicaceae: high S-demanding crops

SO ₃ (Kg/Ha)	Total need	s Grain exports
Wheat (yield 55 q/Ha)	⁵⁰ x 4	²⁵ x 3
Rapeseed (yield 35 q/Ha)	215	72 🕈
		Aspach DGER 1992 Cetiom

Observation of S oligotrophy in soils

Reduction in industrial emissions rich in • sulfur (SO₂)

Atmospheric SO2 emissions in France (kT)

Schnug and Haneklaus 1994

EMEP/MSC-W Data Note 1/2014

SO ₃ (Kg/Ha)	Total needs	Grain exports	
Wheat (yield 55 q/Ha)	⁵⁰ x 4	²⁵ x 3	
Rapeseed (yield 35 q/Ha)	215	72 🕇	
	Aspach DGER 1992 Cetiom		

Observation of S oligotrophy in soils

- Reduction in industrial emissions (SO₂)
- Substitution of S-containing N and P fertilisers
- Declining use of S compounds used for plant protection
- Increase in crop productivity → increases in S exportation

Schnug and Haneklaus 1994

 \rightarrow Empirical S fertilisation : no optimised practices (75 kg/ha SO₃, Terres Inovia)

Impacts of S deficiency

Photos courtesy: D. Goudier, L. Dubousset

SCPA, Mulhouse

- polysulphate.com
- Yield components (seed yield, seed weight) Dubousset et al. 2009
- Germination capacity D'Hooghe et al. 2014
- Seed quality (oil, protein contents) D'Hooghe et al. 2014

- Framework to analyse the impact of environnemental factors that drive growth i.e. T°C, PAR and S availability
- Prediction of leaf S content from the end of winter until the onset of pod formation: indicator of further plant performances (yield and grain quality)

Brunel-Muguet et al. 2015

Framework of the modelling approach

Why the vegetative phase?

- Strong correlation between S availability at budding and final yield (Dubousset et al. 2010) - Low S availability during the vegetative phase: S leaching and slow mineralisation (Suhardi et al. 1992, Merrien et al. 1998)

Why leaf growth? central variable

- Leaves are the major **source of S** = 80% of total S at bolting
- Sequential senescence leads to important S losses
- Leaves are the main site for photosynthesis and the main source for carbohydrate

C assimilation

% S allocation to the leaves

Description of the model SuMoToRI

OUTPUT VARIABLES *until the onset of pod formation*

Biomass, S amounts, Fractions of organic and mineral S (~potential of remobilization)

In the three compartements (BIG LEAF, Detached Leaves, Rest of the plant)

Model calibration (greenhouse dataset 2011) Model evaluation (greenhouse dataset 2013) 0.25 0.25 LA (m² plant⁻¹) TDW (with FL) (g plant⁻¹) LA (m² plant⁻¹) TDW (with FL) (g plant⁻¹) 0.20 0.20 0.15 0.15 Simulation 0.10 0.10 LS 0.05 0.05 HS 0.00 0.00 n 1000 1200 S HS LDW _{BL} (g plant⁻¹) QS _{BL} (mg S plant⁻¹) QS _{BL} (mg S plant⁻¹) LDW _{BL} (g plant⁻¹) 14 ſ **Observation** 1000 1200 Λ n n QS mobile pool in BL QS mobile pool QS mobile pool QS mobile pool in BL (mg S plant⁻¹) in the rest of the plant in the rest of the plant (mg S plant⁻¹) (mg S plant⁻¹) (mg S plant⁻¹) Ó Ϋ́δ C 1000 1200

Thermal time after vernalization (°Cd, Tb=5)

Brunel-Muguet et al. 2015

Thermal time after vernalization (°Cd, Tb=5)

S-pools partitioning : mineral (sulfates) vs. organic (structural + metabolic) fraction

 \rightarrow An estimation of the potential for S remobilisation toward growing sinks at later stages (pods)

Thermal time after end of winter (°Cd, Tb5)

• Expanding the prediction period until seed maturity :

 \rightarrow Green Area Index including pod area especially when green leaf area starts declining at the onset of pod formation

- Finer description of mobile S pool :
 - → Are other forms involved in remobilization under LS?
 → Methiine ? (Gaudin 2013)
 - → Are other organs involved in remobilization throughout growth?
- Sensitivity analyses

Adaptation for other Brassica?

detached leaves

Some food for thought

Compartments

No more detached leaves: senescence followed by leaf detachement is very specific to WOSR → adaptation of the remobilization equations

- Indicators
- Is SO₄²⁻ still the most important S mobile form used for remobilisation?
- Which are the most relevant compounds to predict organoleptic properties ?

 → glucosinolate ?

Thank you for your attention

Sophie Brunel-Muguet Jean-Christophe Avice Jacques Trouverie Marie-Pascale Prud'homme Philippe Laîné

Marie Turner Céline Baty-Julien Antoine Menil

Picardie Innovations Végétales, Enseignements et Recherches Technologiques

Jérôme Le Nôtre

This work was performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investment for the Future. This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Estimations of critical requirements in S

Dilution curve based on N critical dilution curves calibrated for rapeseed (Colnenne et al. 1998)

But...luxury uptake in SO_4^{2-} that is not **readily assimilated unlike NO3**--> [Critical S] = [Total S] – [S-SO₄²⁻]

Plant Parameters: definition

TABLE 2 | Symbols, definitions and units of the parameters used in the equations presented in the Appendices.

Symbol	Definition	Unit	Equations
Sowing condition			
ds	Plant density	plant m ⁻²	
PAR interception			
k	PAR extinction coefficient	m ² m ⁻²	Eq. 2
S uptake			
QS _{ini}	Initial S uptake	mg S plant ⁻¹	Eq. 5
aQS	Parameters of the function describing QS as a function of TT	mg S plant ⁻¹	
bQS		°Cd ⁻¹	
Potential leaf growth			
LA ₀	Initial leaf area of photosynthetic leaves	m ² plant ⁻¹	Eq. 1
LA _{max} , K, n	Leaf area expansion parameters	m ² plant ⁻¹ , °Cd, dimensionless	
C acquisition and plant offer			
PARabs _{ini}	Initial absorbed PAR	MJ m ⁻²	Eq. 2
TDWini	Initial total dry weight	g DW plant ⁻¹	
RUE	Radiation use efficiency	g DW MJ ⁻¹	
DW _{FLini}	Initial dry weight of fallen leaves	g DW plant ⁻¹	Eq. 12
aLDW _{FL}	Parameters of the function describing the time progression of dry	g DW plant ⁻¹ °Cd ⁻¹	
bLDW _{FL}	Weight of the fallen leaves	dimensionless	
C allocation to leaves			
β	Coefficient of dry weight allocation to the leaves	dimensionless	
Big leaf C demand			Eq. 3
LDW _{BL ini}	Initial dry weight of the big leaf	g DW plant ⁻¹	
SLA	Specific leaf area	m ² g DW ⁻¹	
Growth S demand			
α_{BL}, β_{BL}	Parameters to estimate critical S content in BL as a function of the dry weight of the BL	mg S plant ⁻¹ dimensionless	Eq. 7
$\alpha_{rest}, \beta_{rest}$	Parameters to estimate critical S content in the rest of the plant as a function of dry weight of the rest of the plant	mg S plant ⁻¹ dimensionless	Eq. 9
Mobile S allocation to leaves			
^E pot	Coefficient of potential repartition of mobile S to the leaves	dimensionless	Eq. 17

Plant Parameters: values données serre 2011 (Exp1)

TABLE 3 | Parameter values of SuMoToRI used for model calibration under HS and LS conditions (with dataset from Experiment 1).

Symbol	Definition	HS	LS	Unit	Source	
PAR inter	rception					
k	PAR extinction coefficient	<i>k</i> = 0.75		m ² m ⁻²	Bonhomme et al., 1982	
Potential	leaf growth					
LA _{max} K	Leaf area expansion parameters	$LA_{max} = 0.20$ K = 872.96		m ² plant ⁻¹ °Cd ⁻¹	Estimated	
N		n = 6.31		dimensionless		
C acquisi	ition and plant offer	\frown				
RUE	Radiation use efficiency	4.59	3.11	g DW MJ ⁻¹	Estimated	
aLDWFL	Parameters of the function describing the time	0.0092		g DW plant=1 °Cd=1	Estimated	
bLDW _{FL}	progression of LDW _{FL}	0.0043		dimensionless		
C allocat	ion to leaves					
β	Coefficient of DW allocation to the leaves	0.41		dimensionless	Estimated	
C demand of the big leaf						
SLA	Specific leaf area	0.028		m ² g DW ⁻¹	Estimated	
Growth S	Demand					
α _{BL}	Parameters to estimate critical S content in BL as a	5.11		mg S plant ⁻¹	Estimated	
β _{BL}	function of LDW _{BL}	-0.52		dimensionless		
		For LS: threshold value [S] _{BL} crit = 3 mg S g DW ⁻¹ for				
		LDW _{BL} < 3 g plant ⁻¹				
arest	Parameters to estimate critical S content in the rest of the plant as a function of DW _{rest}	1.83		mg S plant ⁻¹	Estimated	
Brest		-0.004		dimensionless		
Potential mobile S allocation to leaves						
^e pot	Coefficient of potential repartition of mobile S to the leaves	0.8		Dimensionless	Estimated	

Values genericity except for RUE

Initial state données serre 2011 (Exp1) et 2013 (Exp2)

Symbol	HS-Experiment 1	HS-Experiment 2	LS-Experiment 1	LS-Experiment 2	Unit
Potential leaf growth					
LAo	0.016	0.014	0.013	0.014	m ² plant-1
C acquisition and plant offer					
PARabsini	0	0	0	0	MJ m ⁻²
TDWini	0.652	1.031	0.428	0.778	g DW plant-1
DWFLini	0	0.05	0	0.04	g DW plant ⁻¹
C demand of the big leaf					
LDWBL ini	0.510	0.736	0.328	0.589	g DW plant ⁻¹
S uptake					
QS _{TOTIN}	8.799	10.594	2.865	1.939	mg S plant-1
aQS	7.540	23.457	3.14	2.207	mg S plant-1
bQS	0.0033	0.0026	0.0021	0.0014	°Cd-1
QS _{BLini}	7.48	7.89	2.40	1.38	mg S plant-1
QSrestini	1.32	2.26	0.47	0.55	mg S plant ⁻¹

TABLE 4 | Initial state values under HS and LS conditions for model calibration (Experiment 1) and evaluation (Experiment 2).

aQS and bQS are the parameters of the S uptake function. Their values are adjusted for each experiment (input variables).