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Combining data and models 

 Vegetal material: 117 recombination lines of a bi-

parent breeding (parents: Cervil, Levovil) 

 Two different environmental conditions:  

 CONTROLLED (C) 

 WATER DEFICIT (WD):  

 -75% of water supply 

  50% of the real ETP needs 

 Drainage  20% / 0% 

 

 MODELLING APPROACH: Virtual Fruit Model  

     (Fishman and Génard , 1998) 
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flow 

𝑇𝑓 
Transpiration 

(air humidity , temperature) 

Respiration 

(temperature) 
𝑅𝑓 

𝜓 

temperature, 

 air humidity 



 Parameters do not depend on environmental 

conditions 
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 Parameters do not depend on environmental 

conditions 

 

 8 parameters for the calibration 

 

 

 
Water 

conductivities  

3 parameters 

Sugar active 

uptake 

4 parameters 

Cell expansion 

1 parameter 
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 Good 

calibration 

performances 

NRMSE [%] 

Fresh C 

Cxl Lev Cer 

Cer Cxl Lev 

Cxl 

Cer 

Lev 

Cer Cxl Lev 

Dry C 

Fresh WD 

Dry WD 

𝑵𝑹𝑴𝑺𝑬 

[%] 
Fr Dry 

C 17.41 16.48 

WD 17.76 17.75 

NRMSE 

Mean 

[%] 

Standard 

deviation 

[%] 

Minimum 

[%] 

Maximu

m 

[%] 

Parents and F1  

[%] 

Fresh weight 

in C 

condition 

17.41 5.35 7.88 34.00 

Cer 8.65 

CxL 16.36 

Lev 34.00 

Dry weight in 

C condition 
16.48 4.03 8.61 28.18 

Cer 9.08 

CxL 8.72 

Lev 15.78 

Fresh weight 

in WD 

condition 

17.76 4.10 9.34 34.20 

Cer 9.42 

CxL 12.88 

Lev 24.11 

Dry weight in 

WD condition 
17.65 4.19 8.29 27.46 

Cer 8.29 

CxL 12.70 

Lev 25.19 
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Results: PCA on model parameters 
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Principal component analysis performed on the RILs parameters 

 Hierachical cluster analysis on the individual coordinates in the PC space  
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 Three classes of fruit sizes: 
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 Three classes of fruit sizes: 

 

 

 

 

 

 Objectives: 

5 – 15g 
20 – 80g 100 – 300g 

DRY MATTER CONTENT 

IN CONTROL CONDITION 

 “FLESHNESS” 

WATER LOSS DUE TO 

WATER DEFICIT 
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The ideal fruits are selected according to the criteria: 

 Dry matter content in C condition more than 8% 

 Water loss due to WD conditions less than 15% 



Results: design of ideotypes 
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20 – 80g  5 – 15g 



Results: design of ideotypes 
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100 – 300g  



Conclusions 
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 Traits for water deficit resistance highlighted 

 

 Modelling + optimization approach is suitable for 

ideotypes research 

 

 The model should be evaluated on a different 

population 
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Project TomSec CTPS (2013-2015) 

Project AdapTom (ANR 2014-2017) 

Thank you! 
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