

Reduction of parameter uncertainty and genotype differentiation in plant growth models

Paul-Henry Cournède, et al.

Digiplante, Lab of Mathematics and Computer Science, CentraleSupélec

HortiModel, Avignon, 21-09-2016

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :

 $\ll 1$ genotype = 1 stable parameter vector », [Tardieu, 2003]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

2 / 31

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :

 $\ll 1$ genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

- Phenotype = f1(Parameters, Environment)
- Parameter = f2(Genetics)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :

 $\ll 1$ genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

- Phenotype = f1(Parameters, Environment)
- Parameter = f2(Genetics)

Dynamic System of Plant Growth

$$X(t+1) = F(X(t), U(t), \theta, t)$$

2 / 31

- *X*(*t*) : state variables ⇒ organ masses, leaf surfaces...
- F => biophysical laws
- θ : parameters \implies genotype specific
- *U*(*t*) : exogeneous variables ⇒ environmental and cultural conditions

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ ■

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :

 $\ll 1$ genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

- Phenotype = f1(Parameters, Environment)
- Parameter = f2(Genetics)

Dynamic System of Plant Growth

$$X(t+1) = F(X(t), U(t), \theta, t)$$

- *X*(*t*) : state variables ⇒ organ masses, leaf surfaces...
- F => biophysical laws
- θ : parameters \implies genotype specific
- *U*(*t*) : exogeneous variables ⇒ environmental and cultural conditions

 \Rightarrow A heavy tendency : the development of more and more mechanistic models, with more and more processes (even multiscale processes), and more and more parameters.

A Methodological Issue : Model Parameterization

Different Methods

- Direct measurements
- Literature data
- Similar or comparable experiments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

A Methodological Issue : Model Parameterization

Different Methods

- Direct measurements
- Literature data
- Similar or comparable experiments
- Hidden parameter estimation from experimental data (model inversion)

 \implies Our preference is in all cases to run a full parameter estimation from experimental data, in order to assess properly parameter uncertainty... but it necessitates a proper statistical framework.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Formulation of Plant State-Space Models as Hidden Markov Models

 $\left\{ egin{array}{l} X_{t+1} | X_t \sim p\left(x_{t+1} | x_t, heta
ight) \ Y_t | X_t \sim p\left(y_t | x_t, heta
ight) \end{array}
ight.$

 X_t : hidden variables, Y_t : observed variables, θ : unknown parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Formulation of Plant State-Space Models as Hidden Markov Models

 $\left\{ \begin{array}{l} X_{t+1}|X_t \sim p\left(x_{t+1}|x_t,\theta\right) \\ Y_t|X_t \sim p\left(y_t|x_t,\theta\right) \end{array} \right.$

 X_t : hidden variables, Y_t : observed variables, θ : unknown parameters.

Maximum likelihood estimation

$$\hat{\theta} = Argmax\left(\mathcal{L}(\theta; y)\right) ,$$

with $\mathcal{L}(\theta; y) = p(y|\theta)$ via stoch. variants of the EM algorithm [Trevezas and C., 2013]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Formulation of Plant State-Space Models as Hidden Markov Models

 $\left\{ \begin{array}{l} X_{t+1}|X_t \sim p\left(x_{t+1}|x_t,\theta\right) \\ Y_t|X_t \sim p\left(y_t|x_t,\theta\right) \end{array} \right.$

4 / 31

 X_t : hidden variables, Y_t : observed variables, θ : unknown parameters.

Maximum likelihood estimation

$$\hat{ heta} = A$$
rgmax $\left(\mathcal{L}(heta; y)
ight) \; ,$

with $\mathcal{L}(\theta; y) = p(y|\theta)$ via stoch. variants of the EM algorithm [Trevezas and C., 2013]

Bayesian estimation

Evaluation of the posterior $p(\theta|y)$ from the prior $p(\theta)$, via MCMC or filtering methods)

Formulation of Plant State-Space Models as Hidden Markov Models

 $\left\{\begin{array}{l}X_{t+1}|X_t \sim p\left(x_{t+1}|x_t,\theta\right)\\Y_t|X_t \sim p\left(y_t|x_t,\theta\right)\end{array}\right.$

 X_t : hidden variables, Y_t : observed variables, θ : unknown parameters.

Maximum likelihood estimation

$$\hat{ heta} = Argmax\left(\mathcal{L}(heta; y)
ight) \;,$$

with $\mathcal{L}(\theta; y) = p(y|\theta)$ via stoch. variants of the EM algorithm [Trevezas and C., 2013]

Bayesian estimation

Evaluation of the posterior $p(\theta|y)$ from the prior $p(\theta)$, via MCMC or filtering methods)

Resulting Distributions

Difficulties Linked to Parameter Uncertainty

In terms of Prediction : Ucertainty Propagation

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

Difficulties Linked to Parameter Uncertainty

In terms of Prediction : Ucertainty Propagation

In terms of Genotype Differentiation

2 genotypes, A and B, $\hat{\theta}_A = 2.5$, $\hat{\theta}_B = 3.3$, with $p(\theta_A|y_A)$, $p(\theta_B|y_B)$

▲ロト▲舂▶▲巻▶▲巻▶ 一巻 - のへで

Difficulties Linked to Parameter Uncertainty

In terms of Prediction : Ucertainty Propagation

In terms of Genotype Differentiation

2 genotypes, A and B, $\hat{\theta}_A = 2.5$, $\hat{\theta}_B = 3.3$, with $p(\theta_A|y_A)$, $p(\theta_B|y_B)$

▲ロト▲御ト▲臣ト▲臣ト 臣 の父父

Difficulties Linked to Parameter Uncertainty

In terms of Prediction : Ucertainty Propagation

In terms of Genotype Differentiation

2 genotypes, A and B, $\hat{\theta}_A = 2.5$, $\hat{\theta}_B = 3.3$, with $p(\theta_A|y_A)$, $p(\theta_B|y_B)$

 \implies A problem of adequacy between model complexity and experimental data ?

Outline

- 2 Parameter Sensitivity Analysis
- 3 Reduction of Prediction Uncertainty by Data Assimilation
- Modelling Inter-Genotype Parameter Variability

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Outline

2 Parameter Sensitivity Analysis

- 3 Reduction of Prediction Uncertainty by Data Assimilation
- 4 Modelling Inter-Genotype Parameter Variability

Conclusions

Global Sensitivity Analysis for Plant Growth Modeling

Sensitivity Analysis

'The study of how uncertainty in the output of a model can be apportioned to different sources of uncertainty in the model inputs' [Saltelli et al.[2004]]

- Input factors [X_i (1 ≤ i ≤ k)] ⇒ described by random distributions
 - Uncertain parameters
 - Input variables
- Model execution $[f(\mathbf{X}_n) \ (1 \le n \le N)]$
- Output of interest [Y = f(X)] ⇒ depends on analysis aims

Interest of Sensitivity Analysis in the Modeling Process

- To help for the parameterization of Plant Models :
 - Factor Priorization (FP) : identification of the most important factors
 - Factor Fixing (FF) : identification of the most non-influential factors (screening)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interest of Sensitivity Analysis in the Modeling Process

- To help for the parameterization of Plant Models :
 - Factor Priorization (FP) : identification of the most important factors
 - Factor Fixing (FF) : identification of the most non-influential factors (screening)
- To make diagnosis on :
 - The driving forces of plant growth and development
 - The relative importance of the described **biophysical processes** regarding the outputs of interest

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The independent case : Hoeffding decomposition (1948)

Assume that $(X_i)_{i \in \{1:p\}}$ are independent parameters and η a model.

Theorem (Functional decomposition of η)

We have the unique decomposition of the model $\boldsymbol{\eta}$

$$\eta(X) = \eta_0 + \sum_{i=1}^{p} \eta_i(X_i) + \sum_{i,j=1, i \neq j}^{p} \eta_{i,j}(X_{i,j}) + \dots + \eta_{1,\dots,p}(X)$$

$$= \sum_{u \in \{1:p\}} \eta_u(X_u).$$
(1)

where X_u is a group of variables, η_u only depends on X_u and

$$\int \eta_u(x_u)\eta_v(x_v)d\mathbb{P}_X = \mathbb{E}(\eta_u(X_u)\eta_v(X_v)) = 0, \quad \forall u, v \subseteq \{1:p\}, \quad u \neq v$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

ANOVA decomposition and Sobol's indexes (Sobol, 1993)

• Analysis of Variance (ANOVA) decomposition

$$\mathbb{V}(Y) = \sum_u \mathbb{V}(\eta_u(X_u)) = \sum_{i=1}^p V_i + \sum_{1 \leq i < j \leq p} V_{ij} + \dots + V_{1,2,\dots,p}$$

Sobol's indexes

$$S_u = \frac{\mathbb{V}(\eta_u)}{\mathbb{V}(Y)} = \frac{\mathbb{V}(\mathbb{E}[Y|X_u]) - \sum_{v \subsetneq u} \mathbb{V}(\mathbb{E}[Y|X_v])}{\mathbb{V}(Y)}.$$

ANOVA decomposition and Sobol's indexes (Sobol, 1993)

• Analysis of Variance (ANOVA) decomposition

$$\mathbb{V}(Y) = \sum_u \mathbb{V}(\eta_u(X_u)) = \sum_{i=1}^p V_i + \sum_{1 \leq i < j \leq p} V_{ij} + \cdots + V_{1,2,\dots,p}$$

Sobol's indexes

$$S_u = \frac{\mathbb{V}(\eta_u)}{\mathbb{V}(Y)} = \frac{\mathbb{V}(\mathbb{E}[Y|X_u]) - \sum_{v \subsetneq u} \mathbb{V}(\mathbb{E}[Y|X_v])}{\mathbb{V}(Y)}.$$

- First-order index : $S_i = \frac{V_i}{\mathbb{V}(Y)}$ for 'Factor Priorization'
- ► Total index : $S_i^T = S_i + \sum_{j \neq i} S_{i,j} + \sum_{j \neq i, k \neq i, j < k} S_{i,j,k} + \dots + S_{1,\dots,p}$. for 'Factor Fixing'

►
$$1 = \sum_{i=1}^{p} S_i + \sum_{1 \le i < j \le p} S_{ij} + \dots + S_{1,2,\dots,p}$$

 $\sum_{i=1}^{p} S_i$ serves as 'Model Linearity Index

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Sobol's Methods to support Parameter Estimation

SA analysis for the LNAS model [C. et al., 2013]

Output chosen : related to the criterion to optimize for parameter estimation.

 \implies Help rank the parameters and then process parameter estimation with an increasing number of params. (the others being fixed to their nominal values)

Nb. of est. params.	1	2	3	4	5	6	7	8	i
AICc	351.5	346.9	346.0	347.2	343.0	346.0	347.8	348.8	ĺ

Table : Corrected AIC for LNAS model with 1 to 8 estimated parameters

Exemple of Model Diagnosis

Non-linearity assessment : GreenLab Maize [Wu et al., 2009]

Figure : GreenLab Maize (a) Evolution of the linearity index with output of biomass production (b) At each GC, biomass allocation per organ type (b : leaf blade; s : sheath;e : internode; f : cob; m : tassel)

Exemple of Model Diagnosis

Non-linearity assessment : GreenLab Maize [Wu et al., 2009]

Figure : GreenLab Maize (a) Evolution of the linearity index with output of biomass production (b) At each GC, biomass allocation per organ type (b : leaf blade; s : sheath;e : internode; f : cob; m : tassel)

A non-linear period is denoted around GC17. \implies A key step in terms of **biophysical processes** corresponding to the **transition between two allocation phases**

14 / 31

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comprehensive Methodology for Complex Biophysical Systems [Wu et C., 2014]

Motivation :

• A complex biological system is characterized by several interacting processes with **submodels/modules** describing each of them

14 / 31

A D N A 目 N A E N A E N A B N A C N

Comprehensive Methodology for Complex Biophysical Systems [Wu et C., 2014]

Motivation :

 A complex biological system is characterized by several interacting processes with submodels/modules describing each of them

Comprehensive Strategy

- Step 1. Non-linearity study with SRC : R^2
- Step 2. Group analysis : compute the sensitivity indices for each module and interactions between modules
- Step 3. Internal module analysis : screening most non-influential factors in each specific module
- Step4. Overall model analysis with the selected parameters

Application to NEMA model [Bertheloot, et al. 2011]

Five biological modules :

- Nitrogen acquisition by roots(RootNuptake : 34 parameters)
- Nitrogen distribution(Nflux : 28 parameters)
- Carbon acquisition via photosynthesis(Photosynthesis : 10 parameters)
- Carbon distribution(DMflux : 5 parameters)
- Senescence(Tissuedeath : 5 parameters)
- > 17 influential parameters are identified (among 82) : drastic model simplification !

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

A difficulty : the dependent case

In plant growth models, there are usually correlations between parameters (due for example to pleiotropic genetic controls or correlated processes) !

 \implies Sobol indexes are no longer relevant when the inputs X_i are dependent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A difficulty : the dependent case

In plant growth models, there are usually correlations between parameters (due for example to pleiotropic genetic controls or correlated processes)!

 \implies Sobol indexes are no longer relevant when the inputs X_i are dependent.

Example (Chastaing, 2012)

$$Y = \eta(X) = X_1 + X_2,$$

 $X \sim \mathcal{N}(0, \Sigma) \text{ and } \Sigma = egin{pmatrix} 1 & \sigma \ \sigma & 1 \end{pmatrix}.$

$$S_1 = rac{(1+\sigma)^2}{2+2\sigma}, \quad S_2 = rac{(1+\sigma)^2}{2+2\sigma}, \quad S_{12} = rac{2\sigma^2(1+\sigma)}{2+2\sigma}$$

Correlation	S_1	<i>S</i> ₂	<i>S</i> ₁₂	$\sum_{u} S_{u}$
$\sigma = 0$ (independent)	0.5	0.5	0	1
$\sigma = 0.9$ (dependent)	0.95	0.95	0.81	2.71

- In the dependent case, Hoeffding decomposition is not unique.
- $\sum_{u} S_{u}$ is not equal to 1. An information is taking into account several times.

ANCOVA (Li and Rabitz, 2010)

Vector spaces decomposition

Assume that $\eta \in H = L^2_{\mathbb{R}}(\mathbb{R}^p, \mathcal{B}(\mathbb{R}^p), P_x)$ with the usual inner product $\langle f, g \rangle = \int f(x)g(x)dP_x$ for H.

 $\forall u \in \{1 : p\}, H_u \text{ is the vector space of function only depending on } X_u.$ Let be the family of vector subspaces $(H_u^0)_{u \in S}$:

- $H^0_{\emptyset} = H_{\emptyset}$ is the set of constant functions
- and satisfying the hierachical orthogonality property

$$\forall u \in S^*, \quad H^0_u = \left\{ h_u \in H_u \mid \langle h_u, h_v \rangle = 0, \ \forall v \subset u, \ \forall h_v \in H^0_v \right\}.$$
(2)

Chastaing (2012) gives a uniqueness result for dependent inputs : generalization of Hoeffding decomposition.

$$H = \bigoplus_{u \in \{1:p\}} H_u^0 \tag{3}$$

$$Y = \eta(X) = \sum_{u \in \{1:\rho\}} \eta_u(X_u) \tag{4}$$

ANCOVA (Li and Rabitz, 2010)

AnCoVa decomposition

$$\mathbb{V}(Y) = Cov(Y, Y),$$

$$= Cov\left(Y, \sum_{i=1}^{p} \eta_i(X_i) + \dots + \eta_{1,\dots,p}(X)\right),$$

$$= \underbrace{\sum_{u \in \{1:p\}} \mathbb{V}(\eta_u(X_u))}_{ANOVA} + \underbrace{\sum_{u \in \{1:p\}} \sum_{\substack{v \in \{1:p\}\\ u \cap v \neq \{u,v\}}} Cov(\eta_u(X_u), \eta_v(X_v)).$$
(2)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

ANCOVA (Li and Rabitz, 2010)

Generalized Sobol (gSobol) indexes

• Total contribution of X_u

$$gS_u = \frac{Cov(Y, \eta_u(X_u))}{\mathbb{V}(Y)}$$

• Structural contribution of X_u

$$gS_u^S = rac{\mathbb{V}(\eta_u(X_u))}{\mathbb{V}(Y)}$$

• Correlative contribution of X_u

$$gS_u^C = \frac{1}{\mathbb{V}(Y)} \sum_{\substack{\nu \subset \{1:p\}\\ u \cap \nu \neq \{u,\nu\}}} Cov(\eta_u(X_u), \eta_\nu(X_\nu)).$$

We have $S_u = S_u^S + S_u^C$.

 \implies The conclusions can be very different !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Application to LNAS : 10 parameters, Output : Dry Green Leaf Mass [Sainte-Marie et al., 2016]

time interval : [80, 160] - time step : 5 jours. 2 independent groups of parameters : • a first group involved in foliar senescence dynamics :

 $(tt_{sen}, mu_{sen}, s_{sen})^{\top} \sim \mathcal{N}_3(\mu_3, \Sigma_3)$ where $\mu_3 = (644; 2400; 4520)^{\top}$ and $\Sigma_3 = \sigma_3 \rho_3 \sigma_3$ with $\sigma_3 = (32, 2; 120; 226)^{\top}$ and

$$\rho_3 = \begin{bmatrix} 1 & 0,5 & -0,5\\ 0,5 & 1 & 0,2\\ -0,5 & 0,2 & 1 \end{bmatrix}$$

• a second group involved in allocation dynamics between roots and leaves : $(mu_{alloc}, s_{alloc}, s_{init}, s_{end})^{\top} \sim \mathcal{N}_4(\mu_4, \Sigma_4)$ where $\mu_4 = (550; 300; 0,7; 0,15)^{\top}$ and $\Sigma_4 = \sigma_4 \rho_4 \sigma_4$ with $\sigma_4 = (27,5; 15; 0,035; 0,075)^{\top}$ and

$$ho_4 = egin{bmatrix} 1 & 0,2 & 0 & 0 \ 0,2 & 1 & 0,5 & -0,5 \ 0 & 0,5 & 1 & -0,5 \ 0 & -0,5 & -0,5 & 1 \end{bmatrix}.$$

3 additional independent parameters $rue \sim \mathcal{N}(3,6; 0,15), e \sim \mathcal{N}(60; 3),$ $k_b \sim \mathcal{N}(0,7; 0,035)$

Application to LNAS : 10 parameters, Output : Dry Green Leaf Mass [Sainte-Marie et al., 2016]

Figure : Generalized Sobol indexes associated to the Dry Green Leaf Mass

Outline

2 Parameter Sensitivity Analysis

3 Reduction of Prediction Uncertainty by Data Assimilation

- 4 Modelling Inter-Genotype Parameter Variability
- Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fundamental concepts of Sequential Monte Carlo methods

- Objective of Bayesian filtering methods : provide an estimator p̂(x_n^a|y_{1:n}) of p(x_n^a|y_{1:n}), where x_n^a = (θ, x_n).
- Monte Carlo Samples (Particles)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fundamental concepts of Sequential Monte Carlo methods

- Objective of Bayesian filtering methods : provide an estimator p̂(x_n^a|y_{1:n}) of p(x_n^a|y_{1:n}), where x_n^a = (θ, x_n).
- Monte Carlo Samples (Particles)

- \Rightarrow A value and a weight assigned to each particle
- \Rightarrow <u>ideal case</u> : drawn directly from $p(x_n^a|y_{0:n})$ (too difficult)
- \Rightarrow in practice : drawn from (importance sampling)

20 / 31

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

• Initialization of the particles. For i = 1, ..., M, $\tilde{x}_0^{a(i)} \sim p(x_0^a)$, $w_0(\tilde{x}_0^{a(i)}) = \frac{1}{M}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• Initialization of the particles. For i = 1, ..., M, $\tilde{x}_0^{a(i)} \sim p(x_0^a)$, $w_0(\tilde{x}_0^{a(i)}) = \frac{1}{M}$

Algorithm for Convolution Particle Filtering

[Campillo et al., 2009]

- Initialization of the particles. For i = 1, ..., M, $\tilde{x}_0^{a(i)} \sim p(x_0^a)$, $w_0(\tilde{x}_0^{a(i)}) = \frac{1}{M}$
- **Iteration** For *n* = 0, ..., *N*,
 - **\$ Prediction**

\$ Correction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Algorithm for Convolution Particle Filtering

[Campillo et al., 2009]

- Initialization of the particles. For i = 1, ..., M, $\tilde{x}_0^{a(i)} \sim p(x_0^a)$, $w_0(\tilde{x}_0^{a(i)}) = \frac{1}{M}$
- **Iteration** For *n* = 0, ..., *N*,
 - \$ Prediction : For i = 1, ..., M, $\tilde{x}_{n+1-}^{a}{}^{(i)} \sim p(x_{n+1}^{a} | \tilde{x}_{n}^{a(i)}), \tilde{y}_{n+1-}^{(i)} \sim p(y_{n+1} | \tilde{x}_{n+1-}^{a}{}^{(i)})$ Weight calculation :

$$w_{n+1}^{(i)} = K_{h_M}^Y (y_{n+1} - \tilde{y}_{n+1-}^{(i)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• **Iteration** For *n* = 0, ..., *N*,

\$ Prediction : For
$$i = 1, ..., M$$
,
 $\tilde{x}_{n+1-}^{a}{}^{(i)} \sim p(x_{n+1}^{a}|\tilde{x}_{n}^{a(i)}), \tilde{y}_{n+1-}^{(i)} \sim p(y_{n+1}|\tilde{x}_{n+1-}^{a}{}^{(i)})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- **Iteration** For *n* = 0, ..., *N*,
 - **\$ Prediction**: For i = 1, ..., M, \tilde{x}_{n+1-}^{a} (*i*) $\sim p(x_{n+1}^{a}|\tilde{x}_{n}^{a(i)}), \tilde{y}_{n+1-}^{(i)} \sim p(y_{n+1}|\tilde{x}_{n+1-}^{a})$ We let a solution.

Weight calculation :

• **Iteration** For *n* = 0, ..., *N*,

Algorithm for Convolution Particle Filtering

[Campillo et al., 2009]

- Initialization of the particles. For i = 1, ..., M, $\tilde{x}_0^{a(i)} \sim p(x_0^a)$, $w_0(\tilde{x}_0^{a(i)}) = \frac{1}{M}$
- **Iteration** For *n* = 0, ..., *N*,
 - \$ Prediction : For i = 1, ..., M, $\tilde{x}_{n+1-}^{a}{}^{(i)} \sim p(x_{n+1}^{a} | \tilde{x}_{n}^{a(i)}), \tilde{y}_{n+1-}^{(i)} \sim p(y_{n+1} | \tilde{x}_{n+1-}^{a}{}^{(i)})$ Weight calculation :

$$w_{n+1}^{(i)} = K_{h_M}^Y(y_{n+1} - \tilde{y}_{n+1-}^{(i)})$$

\$ Correction : For i = 1, ..., M, $\tilde{x}_{n+1}^{a}^{(i)} \sim \hat{p}(x_{n+1}^{a}|y_{0:n+1})$

Kernel based estimator :

$$\hat{p}(x_{n+1}^{a}|y_{0:n+1}) = \sum_{i=1}^{M} \tilde{w}_{n+1}^{(i)} K_{h_{M}}^{X}(x_{n+1}^{a} - \tilde{x}_{n+1}^{a})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Data Assimilation for Prediction

 \implies Use of experimental data in the early stages of crop growth to estimate $p(\theta, x_n | y_{\leq n})$ and then predict the final $p(x_N)$

• Sugar beet with LNAS [Chen, 2014]

	•	Wheat	with	STICS	[Chen,	2014
--	---	-------	------	-------	--------	------

	Real Data 2006	DA estimates	95% CI	UA estimates	95% CI
		(relative error in %)		(relative error in %)	
$Q_{b}(t_{142})$	355.2	348.1 (2.0%)	[258.7; 437.4]	507.8 (43.0%)	[368.4; 647.3]
$Q_{b}(t_{198})$	320.6	301.3 (6.0%)	[219.0; 383.6]	435.7 (35.9%)	[384.3; 560.7] *
$Q_r(t_{142})$	1459.2	1716.2 (17.6%)	[1427.9; 2004.5]	1930.7 (32.3%)	[1603.0; 2258.4] *
$Q_{r}(t_{198})$	2400.0	2644.3 (10.2%)	[2209.4; 3079.2]	2942.9 (22.6%)	[2455.0; 3430.7] *

	Real Data 2013	DA estimates	95% CI	UA estimates	95% CI
		(relative error in %)		(relative error in $\%)$	
hur (t198)	0.276	0.272 (1.7%)	[0.260; 0.283]	0.290 (5.0%)	[0.286; 0.295]
$har(t_{210})$	0.274	0.303 (10.3%)	[0.284; 0.322]	0.308 (12.2%)	[0.303; 0.313]
$hur(t_{226})$	0.289	0.297 (2.6%)	[0.278; 0.316]	0.303 (4.7%)	[0.295; 0.310]
$har(t_{255})$	0.239	0.262 (9.7%)	[0.240; 0.283]	0.272 (14.0%)	[0.253; 0.291]
$har(t_{275})$	0.257	0.260 (1.2%)	[0.229; 0.291]	0.267 (4.0%)	[0.233; 0.302]
$LAI(t_{233})$	4.235	4.514 (6.6%)	[3.144; 5.883]	3.482 (17.8%)	[0.471; 6.494]
$LAI(t_{212})$	4.735	4.627 (2.3%)	[3.192; 6.062]	3.842 (18.9%)	[0.000; 7.693]
$LAI(t_{219})$	4.225	4.867 (15.2%)	[2.394; 7.340]	3.994 (5.5%)	[0.000; 8.638]
$LAI(t_{233})$	4.910	5.215 (6.2%)	[0.969; 9.462]	4.274 (13.0%)	[0.000; 11.214]
$magrain(t_{200})$	819.38	804.33 (1.8%)	[611.68; 996.98]	550.58 (32.8%)	[128.97; 972.20]

 $(\bigcirc$

Outline

- 2 Parameter Sensitivity Analysis
- 3 Reduction of Prediction Uncertainty by Data Assimilation
- Modelling Inter-Genotype Parameter Variability

Conclusions

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Statistical Framework

- A population of Genotypes ...
 - Typical situation : a small number of plants are measured for a family of genotypes
 - The genetic variability will be studied with a population-based model with the genotype as the random effect [Baey et al., 2014]

(日) (四) (日) (日) (日)

Statistical Framework

- A population of Genotypes ...
 - Typical situation : a small number of plants are measured for a family of genotypes
 - The genetic variability will be studied with a population-based model with the genotype as the random effect [Baey et al., 2014]
- ... Represented by a Hierarchical Mixed-Effect Model
 - **First-stage** : intra-genotypic variation (for each genotype *i*, of param ϕ_i)

$$egin{array}{lll} \mathbf{y}_i &= \mathcal{F}(\phi_i, \mathbf{x}_i) + arepsilon_i, \ arepsilon_i &\sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \end{array}$$

• Second-stage : inter-genotypic variation

$$\begin{array}{ll} \phi_i &= \beta + \xi_i, \\ \xi_i &\sim \mathcal{N}_P(0, \Gamma) \end{array}$$

(日) (四) (日) (日) (日)

Statistical Framework

- A population of Genotypes ...
 - Typical situation : a small number of plants are measured for a family of genotypes
 - The genetic variability will be studied with a population-based model with the genotype as the random effect [Baey et al., 2014]
- ... Represented by a Hierarchical Mixed-Effect Model
 - First-stage : intra-genotypic variation (for each genotype *i*, of param ϕ_i)

$$egin{array}{lll} \mathbf{y}_i &= \mathcal{F}(\phi_i, \mathbf{x}_i) + arepsilon_i, \ arepsilon_i &\sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \end{array}$$

• Second-stage : inter-genotypic variation

$$egin{array}{lll} \phi_i &= eta + \xi_i, \ \xi_i &\sim \mathcal{N}_P(0,\Gamma), \end{array}$$

- The genotypic variability is represented by the variability of the random parameters, i.e. by the covariance matrix Γ.
- ▷ We test for the variability of parameters by testing if their variances are null .

Maximum Likelihood estimation for Mixed Models

- Parameters : $\theta = (\beta, \Gamma, \sigma^2), \theta \in \mathbb{R}^m$
- Likelihood :

$$L(\theta) := f(y;\theta) = \int_{\mathbb{R}^{p \times N}} f(y,\phi;\theta) d\phi = \int_{\mathbb{R}^{p \times N}} f(y \mid \phi;\theta) f(\phi;\theta) d\phi$$

- The nonlinearity of g(t_{ij}, φ_i) = E(y_{ij}|φ_i) generally makes the computation of this integral untractable analytically
- Mixed models as incomplete data problem by considering random effects as missing data.
- \Rightarrow stochastic variants of Expectation- Maximization (EM) algorithm.

EM Algorithm

The main idea is to work with the density of the complete data $f(y, \phi; \theta)$. At iteration k :

Step E (Expectation, with MCMC) : our objective is to approximate

$$Q(\theta; \theta^k) = \mathbb{E}\left(\log f(y, \phi; \theta) \mid y; \theta^k\right)$$

based on the generation of a Markov chain $(\phi^{k,(1)},\ldots,\phi^{k,(m_k)})$:

$$\hat{Q}(heta; heta^k) = rac{1}{m_k}\sum_{m=1}^{m_k}\log f(y,\phi^{k,(m)}; heta)$$

or when reusing previous simulations Stochastic Approximation [Kuhn and Lavielle, 2005] :

$$\hat{Q}(heta; heta^k) = \hat{Q}(heta; heta^{k-1}) + \gamma_k \left[rac{1}{m_k} \sum_{m=1}^{m_k} \log f(y,\phi^{k,(m)}; heta) - \hat{Q}(heta; heta^{k-1})
ight]$$

Step M (Maximization) :

$$\theta^{(k+1)} = \arg \max_{\theta \in \Theta} Q(\theta; \theta^k)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Variance Components Testing

We consider here a diagonal variance structure Γ for the mixed effects :

$$\Gamma = \begin{pmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & (0) \\ (0) & & \ddots & \\ & & & & \sigma_p^2 \end{pmatrix}$$

Variance Components Testing

We consider here a diagonal variance structure Γ for the mixed effects :

$$\Gamma = \begin{pmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & (0) \\ (0) & & \ddots & \\ & & & & \sigma_p^2 \end{pmatrix}$$

We consider tests of the form :

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

with

$$\Theta_0 = \{0\}^q \times [0; +\infty)^{p-q} \times \Omega, \quad \Theta_1 = [0; +\infty)^p \times \Omega$$

 \implies When testing if q variance components are null, we are thus testing if these q components are on the boundary of the parameter space Θ .

Case of one variance (variability of parameter k of mean β_k and variance σ_k^2)

$$H_0: \{\sigma_k^2 = 0\}$$
 vs. $H_1: \{\sigma_k^2 \ge 0\},$

Likelihood ratio test : $T = -2(\ell_0(\theta) - \ell_1(\theta)) \stackrel{H_0}{\sim} \frac{1}{2}\chi_1^2 + \frac{1}{2}\chi_0^2$

Application to the GreenLab model of Rapeseed

Collaboration with INRA Grignon [Baey et al., 2016]

- 34 individual plants; "rosette" stage, leaf profiles
- 4 parameters : μ, s^{pr}, a_l, b_l
- MCMC-EM : Adaptive Metropolis with Global Scaling [Andrieu 2008]
- test random vs fixed effects (with Likelihood ratio tests)

Results

• μ , a_l variable in the population : 2 constant parameters b_l , s^{pr}

Outline

- 2 Parameter Sensitivity Analysis
- 3 Reduction of Prediction Uncertainty by Data Assimilation
- 4 Modelling Inter-Genotype Parameter Variability

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

• Importance of a proper assessment of parameter uncertainty for prediction and genotype differentiation

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Summary

- Importance of a proper assessment of parameter uncertainty for prediction and genotype differentiation
- Sensitivity Analysis (especially Sobol's method) can help
 - to reduce the complexity of model parameterization
 - to provide insights about the model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

- Importance of a proper assessment of parameter uncertainty for prediction and genotype differentiation
- Sensitivity Analysis (especially Sobol's method) can help
 - to reduce the complexity of model parameterization
 - to provide insights about the model
 - but be careful if input parameters are dependent !!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Summary

- Importance of a proper assessment of parameter uncertainty for prediction and genotype differentiation
- Sensitivity Analysis (especially Sobol's method) can help
 - to reduce the complexity of model parameterization
 - to provide insights about the model
 - but be careful if input parameters are dependent !!!!
- Data Assimilation ('online model re-calibration') can help reduce prediction uncertainty

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Summary

- Importance of a proper assessment of parameter uncertainty for prediction and genotype differentiation
- Sensitivity Analysis (especially Sobol's method) can help
 - to reduce the complexity of model parameterization
 - to provide insights about the model
 - but be careful if input parameters are dependent !!!!
- Data Assimilation ('online model re-calibration') can help reduce prediction uncertainty
- Mixed-effect plant growth models can be used to identify inter-genotype parameter variability, but 2 major difficulties :
 - parameter estimation of nonlinear mixed-effect models
 - statistical tests on variance components

Summary

- Importance of a proper assessment of parameter uncertainty for prediction and genotype differentiation
- Sensitivity Analysis (especially Sobol's method) can help
 - to reduce the complexity of model parameterization
 - to provide insights about the model
 - but be careful if input parameters are dependent !!!!
- Data Assimilation ('online model re-calibration') can help reduce prediction uncertainty
- Mixed-effect plant growth models can be used to identify inter-genotype parameter variability, but 2 major difficulties :
 - parameter estimation of nonlinear mixed-effect models
 - statistical tests on variance components
- All the methods are implemented in a generic way in the PYGMALION platform at CentraleSupélec, with the recent possibility of connecting to external simulators (test cases with simulators in GroIMP, R ...)

THANKS !

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで