

19-22 September 2016, Avignon

Challenges in modelling climate change effects on the productivity of vegetable crops

Katrin Kahlen Hannah-Rebecca Klostermann Jana Zinkernagel

Department of Vegetable Crops, Geisenheim University, Germany

Avignon, 2016-09-22

Background

Crop production in a future climate

- elevated CO₂ & temperature, altered precipitation pattern^{1,4}
- main results from FACE, OTC experiments \rightarrow photosynthesis, yield...^{5,6}

Crop models (CM) are useful tools in climate change impact studies

- deal with multiple climate factors and how they interact with various crop growth and yield formation processes that are sensitive to climate
- applied in many studies (e.g. Asseng et al. 2014; 2015)
- focus on main agricultural crops; food security and rising population^{1,3}

Field vegetable crops

- provide healthy food & important economic sector²
- studies with CC-experiments under natural, often limiting environmental conditions and/or the corresponding simulation studies are lacking

(IPCC, 2013¹; Welbaum, 2015²; Myers *et al.*, 2014³; Zachos *et al.*, 2001 & 2008⁴; Ainsworth and Long, 2005⁵; Leakey *et al.*, 2009⁶)

I. Vegetable crops: growth & production

Harvest at different phenological stages

- many different edible plant parts (harvest organs): e.g. leaves, bulb, pseudostem, rhizome, inflorescence, immature flower stalk
- phenological stage: immature vegetative or reproductive development stage
- biomass allocation:
 - biomass present in organ (leaves, stem, flowers...)
 - environment & genotype affect source-sink relationship

Harvest several times within a growth season

- short growth cycle, several cycles within a year (season)
- season: different environmental conditions:
 - spring, summer, autumn, through winter
 - varying light & temperature conditions
- intensive water & nutrient demand

I. Vegetable crops: future climate

Responses to elevated CO₂ (eCO₂)

perennial ryegrass

 no down-regulation of photosynthesis shortly after cutting and in spring at eCO₂ (Ainsworth et al., 2003)

potato

- higher yield under eCO₂ primarily due to a higher number of tubers
- increase of photosynthetic rates and carbon assimilation under eCO₂
 (Miglietta et al., 1998)

leafy vegetable spinach (Proietti *et al.*, 2013)

fruit vegetable cucumber (Kimball, 1983)

soybean

- stimulation of seed yield diminished to zero as drought intensified
- stimulation of leaf-level photosynthesis eliminated during periods of rapid drying

(Gray et al. 2016)

I. Vegetable crops: future climate

Priorities in plant growth control when nutrients, temperature or water availability (other factors) constrain plant growth or productivity (adapted from Körner, 2015), who stated: "Growth restrictions under eCO₂ are assumed to be mainly caused by sink-limitations"

II. Plant architecture: Virtual plants

Dynamic 3d plant growth model

II. Plant architecture: photosynthesis

Extended approaches for quantitative limitation analysis of photosynthesis

non-saturated light

What is the most prominent factor limiting photosynthesis in a cucumber canopy?

(Chen et al. 2014 AoB)

salt stress

(Chen et al. 2015 PCE)

II. Plant architecture: light

II. Plant architecture: light & temperature

Measured climatic data with MT4d = mean temperature of 4 days (°C) PAR4d = mean PAR of 4 days (µmol m⁻² s⁻¹).

Observed and simulated lengths of internodes (FIL) cucumber plants at 4 weeks after transplanting

	PAR	PAR-RFR	Temp-PAR-RFR
RMSD	1,8	1,4	1,0
Rel. RMSD	18%	14%	10%
Bias	1,7	0,9	0,1
SPE	89%	41%	2%

(Kahlen and Chen, 2015)

II. Plant architecture: drought stress

(Fruit model: Wiechers et al. 2011)

III. Virtual plant modelling: changing / future climate

Recent studies of

Pallas and Christophe (2015, grapevine)
Moriondo et al. (2015, olive trees and grapevine)

summarize

- usefulness of models combining the responses of individual organs to environmental conditions with processes taking the effect of multiple constraints into account
- need to take into account the variability in sink strength under abiotic constraints
 - e.g. intrinsic leaf sink strength depends on abiotic stress(es)
- need large range of experimental conditions for parameter estimation

III. Virtual plant modelling: future climate

- I. conceptualize virtual plant model for field-grown pickling cucumber based on *L-Cucumber*
- II. integrate plant responses to changes in water availability, integrate concepts for branching and adapt the model for fruit growth via sink activity
- III. parameterization: data from growth chambers, greenhouses

eL-PicklingCucumber

III. Virtual plant modelling: future climate

IV. Model evaluation: use data from face facility, e.g. at Geisenheim University (Germany)

Face2Face-Project with work packages for three vegetable crops and modelling

V. Simulation scenarios: conduct in silico experiments

Summary - challenges

I. Vegetable crops versus major agricultural crops

- growth characteristics & harvest organs, functional groups
- learning from agricultural crops
- role of sinks/other control pathways in responses to elevated CO₂ under limiting conditions

II. Role of plant architecture

- resource use efficiency
- plant growth and development
- interplay with productivity under changing environmental conditions

III. Virtual plants - suggestions

- start with greenhouse crop model
- learn from grapevine studies
- use sound experiments for model evaluation