27/10/2016

Ongoing developments in greenhouse climate control

J.I. Montero, P. Muñoz, E. Baeza, C. Stanghellini

GREENHOUSE AGROSYSTEMS OPTIONS

OPTION 1 PASSIVE CLIMATE CONTROL OPTION 2 ACTIVE CLIMATE CONTROL

LIMITED YIELDS GOOD QUALITY IN LIMITED PERIODS UNEVEN PRODUCTION LOW COSTS

HIGH YIELDS GOOD QUALITY ALMOST YEAR-ROUND UNIFORM PRODUCTION HIGH COSTS

Night time climate in Passive Greenhouses

- Internal and external screens
- Radiative properties of covering materials
- Semi-closed passive greenhouses.
- Increasing greenhouse thermal inertia

Piscia, 2012

Radiative cover properties and greenhouse Relative humidity

State of the art reviewed by Vadiee, and Martin(2012). Energy saving up to 30% and increase in yield of 20% (Marcelis et al., 2009) Important increase in water use efficiency (Katsoulas et al. (2015)

Day-time winter ventilation is a trade

- Poor ventilation leads to CO2 depletion
- High ventilation lowers temperature too much
- "Ventilate as little as possible and supply CO₂ up to the outside concentration" (Stanghellini, 2007)
- BUT little ventilation means excessive humidity in winter.
- New plastic greenhouses can solve condensation dripping

Ntinas et al., 2015: 10.8% higher marketable yield, 18.4 % more antioxidant capacity

Time

Conclusions: Passive greenhouses

- Day time: application of existing knowledge on ventilation and light transmission
- Night time: Integration of solutions (screening, semi-closed greenhouse, water sleeves, use of waste/solar heat)
- Specific climate controllers for passive greenhouses are needed, particularly concerning humidity control.

Active greenhouses

- Most common type of greenhouses in regions with cold winter climate.
- Highly technical, aim is to achieve optimal microclimate during the whole cycle to maximize yield and quality.
- This is achieved at the expense of high fossil energy input and labour intensive cultivation
- Therefore much of the research and innovation for active greenhouses is focussed on:
 - Energy saving
 - Automation and robotization.

WAGENINGEN UR For quality of life

Strategies for fossil energy saving

1. MAXIMIZING USE OF SUNLIGHT.

Group of crops	Crop	Yield reduction	Remarks		
		at 1% less light			
Soilgrown vegetables	Lettuce	0.8%	Equal effects on fresh and dry weight		
	Radish	1%	Effects on tuber stronger than on shoot. Shoot/tuber ratio increases at low light		
Fruit vegetables	Cucumber	0.7-1%	Dry-matter percentage of fruit decreased at low light. Effect of light on fruit fresh weight is smaller than on fruit dry weight		
	Tomato	0.7-1%	Effect on fruit fresh weight stronger than on plant dry weight		
	Sweet pepper	0.8-1%			
Cut flowers	Rose	0.8-1%	Light affects number of shoots as well as shoot weight. Effects in summer smaller than in winter		
	Chrysanthemum	0.6%			
Marcelis et al., 2006					

GENINGENUR

Diffuse light – crop effects

Up to 10% higher yield by diffuse light (e.g. Hemming et al., 2006; 2008; Dueck et al;,2012; Li, 2014)

Swinkels, 2016

New prototype of glasshouse with optimum light transmission: the "Winterlight greenhouse"

•Goals: >10% more natural sunlight in greenhouse during winter months (October-March) and >10% higher light use efficiency by the crop

Innovation elements:

- Greenhouse roof construction roof shape, angle, orientation, materials
 Glass- basic glass with diffuse structure, AR coating, condensation behaviour
 Screen – basic material, installation
- Crop high-wire cucumber, cultivars, cropping system, crop management

0

Strategies for fossil energy saving

2. MINIMIZING HEAT LOSSES

New glasshouse concepts have been developed with double roof covers to minimize radiative and convective heat losses while maintaining excellent optical properties.

VenLowEnergykas

Goal: Greenhouse concept with highest energy saving and good production
Double glass with low u-value and high light transmission

 Glass
 Coating
 T.
 U-value

 Single
 82
 6.7

 Single
 AR-AR
 91
 91

 Single
 AR-Low-e
 81
 4

 Double
 Low-e-AR
 79
 1.2

 Hemming et al. 2012
 Hemming et al. 2012
 Hemming et al. 2012

maurice 💿 BOAL 🖬 co solar glass 🔘 Scheuter

low u-value due to low-ε coating
high light transmission due to AR coatings

The lower use of energy for heating is at the expense of more electricity use for mechanical dehumidification and use of CO_2 from other sources other than from the combustion gases from the boiler.

The Venlow concept has already been upgraded to a tomato commercial grower in The Netherlands (1 ha)

Kempkes, 2016 22

Goal: Greenhouse concept with high energy saving and high production at limited level of investment • New Venlo-greenhouse with insulated covering - Glass with AR coating and diffuse F-CLEAN[®] inside for insulation and high light level •Small ventilation windows: mechanical dehumidification Hemispherical transmission τ_h and the haze η of different combination of materials for PAR light 400- 700 nm Material spherical Haze ¶ glass clear + Fclean diffuse glass clear + AR coating + Fclean diffuse glass diffuse high haze + Fclean clear glass high haze + AR coating + Fclean clear 77 75.9 68 68 75.3 80.7 Kempkes et al., 2015 BOAL VOH AGC AGENINGENUR 12

energy (m ² /m ²) 0.8 0.6 0.4 0.2 0.7 0.8 0.4 0.7 0.8 0.4 0.7 0.8 0.4 0.7 0.8 0.4 0.8 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8				
	Cultivation 2015 27/01 to 18/11			
Heat consumption (m ³ /m ²) Electricity consumption AHU ^(k) (kWh/m ²)	12.6 _{0.8}			
Heat consumption standard practice (m ³ /m ²) Heat cosumption BZ practice (m ³ /m ²)	25.7			
Saving 25aveEnergy compared with standard practice (m³/m²)	14.3			
CO ₂ purchase (kg/m ²)	12.7			
Final yield of 67 kg/m ²				
WAGENINGENUR For quality of life	Kempkes et al., 2015 ²⁴			

2SAVEENERGYKAS®

3. THE NEXT GENERATION OF CULTIVATION TECHNIQUES

A) Maximizing the use of screens, even during daytime!

Ongoing projects with screen manufacturers to characterize better energy saving of screens: thermal properties, air permeability and water permeability

Developing experiments and simulation tools to understand the effect of multiple screens on radiative losses and crop profile temperature

Screen deployed: Much smaller differences

> WAGENINGEN UR For quality of life

Screen stowed: clear temperature differences in the crop

3. THE NEXT GENERATION OF CULTIVATION TECHNIQUES

B) MECHANICAL DEHUMIDIFICATION

How to reduce losses

Conclusions Active greenhouses.

- Active research is under way, mainly combining higher light transmission and energy saving.
- Multiple screens are being installed in new greenhouse prototypes as well as commercial greenhouses for additional energy saving.
- Temperature integration depending on available solar radiation; higher humidity set points and mechanical dehumidification are part of the Next Generation Cultivation Concept.

WAGENINGEN UR For quality of life