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A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :
« 1 genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

Phenotype = f1(Parameters, Environment)

Parameter = f2(Genetics)

Dynamic System of Plant Growth

X (t + 1) = F (X (t),U(t), θ, t)

X (t) : state variables =⇒ organ masses, leaf
surfaces...

F =⇒ biophysical laws

θ : parameters =⇒ genotype specific

U(t) : exogeneous variables =⇒ environmental
and cultural conditions

=⇒ A heavy tendency : the development of more and more mechanistic models, with more and

more processes (even multiscale processes), and more and more parameters.



Introduction 2 / 31

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :
« 1 genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

Phenotype = f1(Parameters, Environment)

Parameter = f2(Genetics)

Dynamic System of Plant Growth

X (t + 1) = F (X (t),U(t), θ, t)

X (t) : state variables =⇒ organ masses, leaf
surfaces...

F =⇒ biophysical laws

θ : parameters =⇒ genotype specific

U(t) : exogeneous variables =⇒ environmental
and cultural conditions

=⇒ A heavy tendency : the development of more and more mechanistic models, with more and

more processes (even multiscale processes), and more and more parameters.



Introduction 2 / 31

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :
« 1 genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

Phenotype = f1(Parameters, Environment)

Parameter = f2(Genetics)

Dynamic System of Plant Growth

X (t + 1) = F (X (t),U(t), θ, t)

X (t) : state variables =⇒ organ masses, leaf
surfaces...

F =⇒ biophysical laws

θ : parameters =⇒ genotype specific

U(t) : exogeneous variables =⇒ environmental
and cultural conditions

=⇒ A heavy tendency : the development of more and more mechanistic models, with more and

more processes (even multiscale processes), and more and more parameters.



Introduction 2 / 31

A Plant Science Issue : Interaction Genotype×Environment

Biophysical models can help understand and predict this interaction :
« 1 genotype = 1 stable parameter vector », [Tardieu, 2003]

Objectives

Phenotype = f1(Parameters, Environment)

Parameter = f2(Genetics)

Dynamic System of Plant Growth

X (t + 1) = F (X (t),U(t), θ, t)

X (t) : state variables =⇒ organ masses, leaf
surfaces...

F =⇒ biophysical laws

θ : parameters =⇒ genotype specific

U(t) : exogeneous variables =⇒ environmental
and cultural conditions

=⇒ A heavy tendency : the development of more and more mechanistic models, with more and

more processes (even multiscale processes), and more and more parameters.



Introduction 3 / 31

A Methodological Issue : Model Parameterization

Different Methods

Direct measurements

Literature data

Similar or comparable experiments

Hidden parameter estimation from experimental data (model inversion)

=⇒ Our preference is in all cases to run a full parameter estimation from
experimental data, in order to assess properly parameter uncertainty... but it
necessitates a proper statistical framework.
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Parameter Estimation and Uncertainty Evaluation

Formulation of Plant State-Space Models as Hidden Markov Models{
Xt+1|Xt ∼ p (xt+1|xt , θ)
Yt |Xt ∼ p (yt |xt , θ)

Xt : hidden variables, Yt : observed variables, θ : unknown parameters.

Maximum likelihood estimation

θ̂ = Argmax (L(θ; y)) ,

with L(θ; y) = p(y |θ) via stoch. variants of the EM algorithm [Trevezas and C., 2013]

Bayesian estimation

Evaluation of the posterior p(θ|y) from the prior p(θ), via MCMC or filtering methods)

Resulting Distributions
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Difficulties Linked to Parameter Uncertainty

In terms of Prediction : Ucertainty Propagation

F ( , ) =

In terms of Genotype Differentiation

2 genotypes, A and B, θ̂A = 2.5, θ̂B = 3.3, with p(θA|yA) , p(θB |yB )

=⇒ A problem of adequacy between model complexity and experimental data ?
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Outline

1 Introduction

2 Parameter Sensitivity Analysis

3 Reduction of Prediction Uncertainty by Data Assimilation

4 Modelling Inter-Genotype Parameter Variability

5 Conclusions
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Global Sensitivity Analysis for Plant Growth Modeling

Sensitivity Analysis

‘The study of how uncertainty in the output of a model can be apportioned to different sources of uncertainty
in the model inputs’ [Saltelli et al.[2004]]

Input factors [Xi (1 ≤ i ≤ k)] =⇒ described by

random distributions

Uncertain parameters
Input variables

Model execution [f (Xn) (1 ≤ n ≤ N)]

Output of interest [Y = f (X)] =⇒ depends on
analysis aims
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Interest of Sensitivity Analysis in the Modeling Process

To help for the parameterization of Plant Models :

Factor Priorization (FP) : identification of the most important factors
Factor Fixing (FF) : identification of the most non-influential factors (screening)

To make diagnosis on :

The driving forces of plant growth and development
The relative importance of the described biophysical processes regarding the outputs
of interest
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The independent case : Hoeffding decomposition (1948)

Assume that (Xi )i∈{1:p} are independent parameters and η a model.

Theorem (Functional decomposition of η)

We have the unique decomposition of the model η

η(X ) = η0 +

p∑
i=1

ηi (Xi ) +

p∑
i,j=1,i 6=j

ηi,j (Xi,j ) + · · ·+ η1,...,p(X )

=
∑

u∈{1:p}

ηu(Xu).

(1)

where Xu is a group of variables, ηu only depends on Xu and∫
ηu(xu)ηv (xv )dPX = E(ηu(Xu)ηv (Xv )) = 0, ∀u, v ⊆ {1 : p}, u 6= v
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ANOVA decomposition and Sobol’s indexes (Sobol, 1993)

Analysis of Variance (ANOVA) decomposition

V(Y ) =
∑

u

V(ηu(Xu)) =

p∑
i=1

Vi +
∑

1≤i<j≤p

Vij + · · ·+ V1,2,...,p

Sobol’s indexes

Su =
V(ηu)

V(Y )
=

V(E[Y |Xu])−
∑

v(u V(E[Y |Xv ])

V(Y )
.

I First-order index : Si = Vi

V(Y )

for ’Factor Priorization’

I Total index : ST
i = Si +

∑
j 6=i Si,j +

∑
j 6=i,k 6=i,j<k Si,j,k + · · ·+ S1,...,p.

for ’Factor Fixing’

I 1 =
∑p

i=1 Si +
∑

1≤i<j≤p Sij + · · ·+ S1,2,...,p∑p
i=1 Si serves as ’Model Linearity Index
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Sobol’s Methods to support Parameter Estimation

SA analysis for the LNAS model [C. et al., 2013]

Output chosen : related to the criterion to optimize for parameter estimation.

=⇒ Help rank the parameters and then process parameter estimation with an
increasing number of params. (the others being fixed to their nominal values)

Nb. of est. params. 1 2 3 4 5 6 7 8

AICc 351.5 346.9 346.0 347.2 343.0 346.0 347.8 348.8

Table : Corrected AIC for LNAS model with 1 to 8 estimated parameters
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Exemple of Model Diagnosis

Non-linearity assessment : GreenLab Maize [Wu et al., 2009]

Figure : GreenLab Maize (a) Evolution of the linearity index with output of biomass production (b) At each
GC, biomass allocation per organ type (b : leaf blade ; s : sheath ;e : internode ; f : cob ; m : tassel)

A non-linear period is denoted around GC17. =⇒ A key step in terms of biophysical processes corresponding
to the transition between two allocation phases
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Comprehensive Methodology for Complex Biophysical
Systems [Wu et C., 2014]

Motivation :

A complex biological system is characterized by several interacting processes with submodels/modules
describing each of them

Comprehensive Strategy

Step 1. Non-linearity study with SRC : R2

Step 2. Group analysis : compute the sensitivity indices for each module and interactions between
modules

Step 3. Internal module analysis : screening most non-influential factors in each specific module

Step4. Overall model analysis with the selected parameters
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Application to NEMA model [Bertheloot, et al. 2011]

Five biological modules :

Nitrogen acquisition by roots(RootNuptake : 34 parameters)

Nitrogen distribution(Nflux : 28 parameters)

Carbon acquisition via photosynthesis(Photosynthesis : 10 parameters)

Carbon distribution(DMflux : 5 parameters)

Senescence(Tissuedeath : 5 parameters)

=⇒ 17 influential parameters are identified (among 82) : drastic model simplification !
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A difficulty : the dependent case

In plant growth models, there are usually correlations between parameters (due for
example to pleiotropic genetic controls or correlated processes) !
=⇒ Sobol indexes are no longer relevant when the inputs Xi are dependent.

Example (Chastaing, 2012)

Y = η(X ) = X1 + X2,

X v N (0,Σ) and Σ =

(
1 σ
σ 1

)
.

S1 =
(1 + σ)2

2 + 2σ
, S2 =

(1 + σ)2

2 + 2σ
, S12 =

2σ2(1 + σ)

2 + 2σ
.

Correlation S1 S2 S12

∑
u Su

σ = 0 (independent) 0.5 0.5 0 1
σ = 0.9 (dependent) 0.95 0.95 0.81 2.71

In the dependent case, Hoeffding decomposition is not unique.∑
u Su is not equal to 1. An information is taking into account several times.
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ANCOVA (Li and Rabitz, 2010)

Vector spaces decomposition

Assume that η ∈ H = L2
R(Rp,B(Rp),Px ) with the usual inner product

〈f , g〉 =
∫
f (x)g(x)dPx for H.

∀u ∈ {1 : p}, Hu is the vector space of function only depending on Xu.
Let be the family of vector subspaces (H0

u )u∈S :

H0
∅ = H∅ is the set of constant functions

and satisfying the hierachical orthogonality property

∀u ∈ S∗, H0
u =

{
hu ∈ Hu | 〈hu, hv 〉 = 0, ∀v ⊂ u, ∀hv ∈ H0

v

}
. (2)

Chastaing (2012) gives a uniqueness result for dependent inputs : generalization of
Hoeffding decomposition.

H =
⊕

u∈{1:p}

H0
u (3)

Y = η(X ) =
∑

u∈{1:p}

ηu(Xu) (4)
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ANCOVA (Li and Rabitz, 2010)

AnCoVa decomposition

V(Y ) = Cov(Y ,Y ),

= Cov

(
Y ,

p∑
i=1

ηi (Xi ) + · · ·+ η1,...,p(X )

)
,

=
∑

u⊂{1:p}

V(ηu(Xu))

︸ ︷︷ ︸
ANOVA

+
∑

u⊂{1:p}

∑
v⊂{1:p}

u∩v 6={u,v}

Cov(ηu(Xu), ηv (Xv ))

︸ ︷︷ ︸
correlated terms

.
(2)
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ANCOVA (Li and Rabitz, 2010)

Generalized Sobol (gSobol) indexes

Total contribution of Xu

gSu =
Cov (Y , ηu(Xu))

V(Y )

Structural contribution of Xu

gSS
u =

V (ηu(Xu))

V(Y )

Correlative contribution of Xu

gSC
u =

1

V(Y )

∑
v⊂{1:p}

u∩v 6={u,v}

Cov(ηu(Xu), ηv (Xv )).

We have Su = SS
u + SC

u .

=⇒ The conclusions can be very different !
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Application to LNAS : 10 parameters, Output : Dry Green
Leaf Mass [Sainte-Marie et al., 2016]

time interval : [80, 160] - time step : 5 jours. 2 independent groups of parameters :
a first group involved in foliar senescence dynamics :
(ttsen,musen, ssen)> ∼ N3(µ3,Σ3) where µ3 = (644; 2400; 4520)> and
Σ3 = σ3ρ3σ3 with σ3 = (32, 2; 120; 226)> and

ρ3 =

 1 0, 5 −0, 5
0, 5 1 0, 2
−0, 5 0, 2 1

 .
a second group involved in allocation dynamics between roots and leaves :
(mualloc , salloc , sinit , send )> ∼ N4(µ4,Σ4) where µ4 = (550; 300; 0, 7; 0, 15)>

and Σ4 = σ4ρ4σ4 with σ4 = (27, 5; 15; 0, 035; 0, 075)> and

ρ4 =


1 0, 2 0 0

0, 2 1 0, 5 −0, 5
0 0, 5 1 −0, 5
0 −0, 5 −0, 5 1

 .
3 additional independent parameters rue ∼ N (3, 6; 0, 15), e ∼ N (60; 3),
kb ∼ N (0, 7; 0, 035)
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Application to LNAS : 10 parameters, Output : Dry Green
Leaf Mass [Sainte-Marie et al., 2016]

Figure : Generalized Sobol indexes associated to the Dry Green Leaf Mass
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Fundamental concepts of Sequential Monte Carlo methods

Objective of Bayesian filtering methods :
provide an estimator p̂(xa

n |y1:n) of p(xa
n |y1:n), where xa

n = (θ, xn).

Monte Carlo Samples (Particles)

⇒ A value and a weight assigned to each particle

⇒ ideal case : drawn directly from p(xa
n |y0:n) (too difficult)

⇒ in practice : drawn from (importance sampling)
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Algorithm for Convolution Particle Filtering
[Campillo et al., 2009]

• Initialization of the particles. For i = 1, . . . ,M,
x̃a

0
(i) ∼ p(xa

0 ) , w0(x̃a
0

(i)) = 1
M
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$ Prediction : For i = 1, . . . ,M,
x̃a

n+1−
(i) ∼ p(xa

n+1|x̃a
n

(i)), ỹ
(i)

n+1−
∼ p(yn+1|x̃a

n+1−
(i))

Weight calculation :

w
(i)
n+1 = KY

hM
(yn+1 − ỹ

(i)

n+1−
)

$ Correction : For i = 1, . . . ,M,
x̃a

n+1
(i) ∼ p̂(xa

n+1|y0:n+1)

Kernel based estimator :

p̂(xa
n+1|y0:n+1) =

M∑
i=1

w̃
(i)
n+1K

X
hM

(xa
n+1 − x̃a

n+1−
(i))
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Data Assimilation for Prediction

=⇒ Use of experimental data in the early stages of crop growth to estimate p
(
θ, xn|y≤n

)
and

then predict the final p (xN )

• Sugar beet with LNAS [Chen, 2014] • Wheat with STICS [Chen, 2014]
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Statistical Framework

A population of Genotypes ...

Typical situation : a small number of plants are measured for a family of
genotypes

The genetic variability will be studied with a population-based model with the
genotype as the random effect [Baey et al., 2014]

... Represented by a Hierarchical Mixed-Effect Model

First-stage : intra-genotypic variation (for each genotype i , of param φi )

yi = F (φi , xi ) + εi ,
εi ∼ N (0,Σ),

Second-stage : inter-genotypic variation

φi = β + ξi ,
ξi ∼ NP (0, Γ),

. The genotypic variability is represented by the variability of the random
parameters, i.e. by the covariance matrix Γ.

. We test for the variability of parameters by testing if their variances are null
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Maximum Likelihood estimation for Mixed Models

Parameters : θ = (β, Γ, σ2), θ ∈ Rm

Likelihood :

L(θ) := f (y ; θ) =

∫
Rp×N

f (y , φ; θ)dφ =

∫
Rp×N

f (y | φ; θ)f (φ; θ)dφ

The nonlinearity of g(tij , φi ) = E(yij |φi ) generally makes the computation of
this integral untractable analytically

Mixed models as incomplete data problem by considering random effects as
missing data.

⇒ stochastic variants of Expectation- Maximization (EM) algorithm.
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EM Algorithm

The main idea is to work with the density of the complete data f (y , φ; θ).At iteration k :

Step E (Expectation, with MCMC) : our objective is to approximate

Q(θ; θk ) = E
(

log f (y , φ; θ) | y ; θk
)
.

based on the generation of a Markov chain (φk,(1), . . . , φk,(mk )) :

Q̂(θ; θk ) =
1

mk

mk∑
m=1

log f (y , φk,(m); θ)

or when reusing previous simulations Stochastic Approximation [Kuhn and Lavielle, 2005] :

Q̂(θ; θk ) = Q̂(θ; θk−1) + γk

[
1

mk

mk∑
m=1

log f (y , φk,(m); θ)− Q̂(θ; θk−1)

]

Step M (Maximization) :

θ(k+1) = arg max
θ∈Θ

Q(θ; θk ).
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Variance Components Testing

We consider here a diagonal variance structure Γ for the mixed effects :

Γ =


σ2

1

σ2
2 (0)

(0)
. . .

σ2
p



We consider tests of the form :

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

with
Θ0 = {0}q × [0; +∞)p−q × Ω, Θ1 = [0; +∞)p × Ω

=⇒ When testing if q variance components are null, we are thus testing if these q
components are on the boundary of the parameter space Θ.

Case of one variance (variability of parameter k of mean βk and variance σ2
k )

H0 : {σ2
k = 0} vs. H1 : {σ2

k ≥ 0},

Likelihood ratio test : T = −2(`0(θ)− `1(θ))
H0∼ 1

2χ
2
1 + 1

2χ
2
0
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Application to the GreenLab model of Rapeseed

Collaboration with INRA Grignon [Baey et al., 2016]

34 individual plants ; ”rosette” stage, leaf profiles

4 parameters : µ, spr , al , bl

MCMC-EM : Adaptive Metropolis with Global Scaling [Andrieu 2008]

test random vs fixed effects (with Likelihood ratio tests)

Results

µ, al variable in the population ; 2 constant parameters bl , spr
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Summary

Importance of a proper assessment of parameter uncertainty for prediction
and genotype differentiation

Sensitivity Analysis (especially Sobol’s method) can help

to reduce the complexity of model parameterization
to provide insights about the model
but be careful if input parameters are dependent ! ! !

Data Assimilation (’online model re-calibration’) can help reduce prediction
uncertainty

Mixed-effect plant growth models can be used to identify inter-genotype
parameter variability, but 2 major difficulties :

parameter estimation of nonlinear mixed-effect models
statistical tests on variance components

All the methods are implemented in a generic way in the
PYGMALION platform at CentraleSupélec, with the recent possibility of
connecting to external simulators (test cases with simulators in GroIMP, R ...)
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THANKS !
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