MODELLING GROWTH: HYDRAULICS AND MECHANICS

I. Cheddadi, V. Baldazzi, N.Bertin, M. Génard, C. Godin

HORTIMODEL 2016

19-22 september, Avignon

PLANTS ARE UNDER PRESSURE THANKS TO WATER FLUXES

Water stress

After a few hours

Water fluxes \leftrightarrow Turgor

PLANTS ARE UNDER PRESSURE THANKS TO WATER FLUXES

Cell scale:

Plasmolyzed

Turgid

Water fluxes \leftrightarrow Turgor

Osmosis = motor for fluxes VSWalls = resistance to growth \Rightarrow Turgor

Growth = simultaneous water flux and wall enlargement

LOCKHART (1965) AND ORTEGA (1985) MODELS

$$\Psi_{ext}$$
$$\Psi = P - \pi$$

Water flux into the cell: $\frac{\mathrm{d}V}{\mathrm{d}t} = AL(\Psi_{ext} - \Psi)$ From high to low water potential

 Ψ : water potential *P*: hydrostatic pressure π : osmotic pressure

A: cell area L: water conductivity LOCKHART (1965) AND ORTEGA (1985) MODELS Growth in one direction

Mechanical equilibrium

between cell turgor P and wall stress σ :

 $P\propto\sigma$

Wall enlargement:

Simple geometry \Rightarrow easy coupling and resolution

LOCKHART (1965) AND ORTEGA (1985) MODELS

- Theoretical framework to understand plant growth
- Flux \leftrightarrow turgor \leftrightarrow growth \leftrightarrow wall enlargement
- Very useful to interpret experimental data
- Extended to larger scales: organ = 1 compartment e.g [Fishman-Génard (1998)]:

LOCKHART (1965) AND ORTEGA (1985) MODELS

- Theoretical framework to understand plant growth
- Flux \leftrightarrow turgor \leftrightarrow growth \leftrightarrow wall enlargement
- Very useful to interpret experimental data
- Extended to larger scales: organ = 1 compartment e.g [Fishman-Génard (1998)]:

Goal: **multicellular extension** 2D, focus on mechanics / hydraulics

CELL WALL MECHANICS

• Mechanical equilibrium on vertices

 P_i : pressures of the **cells** σ_k : elastic stresses of the **walls**

Balance for each vertex:

$$\frac{1}{2} \sum_{i} P_{i} l_{i} \vec{n}_{i} + \sum_{k} \sigma_{k} w \vec{e}_{k} = \vec{0}$$

$$\vec{e}_{k}, \vec{n}_{i} : \text{tangential and normal vectors}$$

$$l_{i}, w : \text{length and width of the walls}$$

• Wall enlargement

$$\frac{1}{l_k} \frac{\mathrm{d}l_k}{\mathrm{d}t} = \frac{1}{E_k} \frac{\mathrm{d}\sigma_k}{\mathrm{d}t} + \phi_k (\sigma_k - \sigma_k^Y)$$
Elongation

$$\stackrel{\text{Elastic}}{\operatorname{response}} \quad \stackrel{\text{Wall}}{\operatorname{synthesis}} \quad \stackrel{\text{Yield stress}}{\operatorname{synthesis}}$$

APOPLASMIC AND SYMPLASMIC FLUXES

 π_i are assumed **constant** L^a : apoplasmic conductivity L^s : symplasmic conductivity ψ^a : water potential of the apoplasm

 P_i, P_j : turgor pressures π_i : osmotic pressure A_i : area of cell *i* A_{ij} : area between cells *i* and *j*

APOPLASMIC AND SYMPLASMIC FLUXES

 P_i, P_j : turgor pressures π_i : osmotic pressure A_i : area of cell *i* A_{ij} : area between cells *i* and *j*

 L^{a} : apoplasmic conductivity L^{s} : symplasmic conductivity ψ^{a} : water potential of the apoplasm

APOPLASMIC AND SYMPLASMIC FLUXES

 P_i, P_j : turgor pressures π_i : osmotic pressure A_i : area of cell *i* A_{ij} : area between cells *i* and *j*

 L^{a} : apoplasmic conductivity L^{s} : symplasmic conductivity ψ^{a} : water potential of the apoplasm **Numerical resolution!**

FIRST EXAMPLE

- Homogeneous parameters
- Realistic values
- Global growth rate ~ 2% per hour

Heterogeneous, non constant turgor and growth rate

A LITTLE HETEROGENEITY

LARGE GROWTH RATE HETEROGENEITY

LARGE GROWTH RATE HETEROGENEITY

ROLE OF SYMPLASMIC FLUXES

Twice **softer** walls

+ inhibition of symplasmic fluxes

SYMPLASMIC FLUXES INHIBITED

No symplasmic fluxes, Low growth heterogeneities

Non linear effect: fluxes amplify heterogeneities

CONCLUSION

- Coupling hydraulics / mechanics
- Physically consistant model
- Realistic parameters, fully explored
- Complex, non linear behavior
- Fluxes can **amplify heterogeneities**
- Extensible in **3D**
- Allows comparison with experiments:
 - Measurement of turgor, mechanical properties
 - Shape evolution \Rightarrow development, morphogenesis

PROSPECTS: TOMATO PERICARP MODEL

Small fruit Thin pericarp Low ploidy level

WT P3D3 P1B3 P30A9 1 cm

C. Rothan, L. Fernandez (INRA Bordeaux)

PROSPECTS: 3D FRUIT MODEL WITH VASCULATURE

Previous work in our group: Mik Cieslak [M. Cieslak, IC, F. Boudon, V. Baldazzi, M. Génard, C. Godin, N. Bertin 2016: submitted]

- 3D reconstruction
- Fruit divided in tetraedra
- Vasculature reconstruction
- Prediction of water and sugar fluxes

Physiology + 3D mechanics + hydraulics ???