



# Bottom-up and top-down approaches – The value of modelling in trait dissection and phenotypic prediction

Karine Chenu, Scott Chapman, Francois Tardieu, Pierre Casadebaig, Jack Christopher and Graeme Hammer

QAAFI, The University of Queensland, Australia CSIRO, Australia INRA, Toulouse and Montpellier, France

### A major challenge

- By 2050: global population rising to 9 Billion, with changes in diet
- $\Rightarrow$  Increase of world demand for crops by 70-100%
- $\Rightarrow$  Major challenge for agriculture Need to increase wheat yield from < 1% (current level) to > 1.7% per year



Fischer Byerlee and Edmeades (2014) Crop yields and global food security. ACIAR, Canberra Brisson, Gate, Gouache, Charmet, Oury and Huard (2010) Field Crops Research 119:201-212. http://www.wheatinitiative.org/about/objectives

### A major challenge

- Need to increase yield progress in diverse set of environments
- Complexity of the problem: Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in the target population of environments (E) given the resources available to search among possible combinations.





Hammer, Cooper, Tardieu, Welch, Walsh, van Eeuwijk, Chapman and Podlich (2006) Trends in Plant Science 11:587-593.

- Dissect complex traits (stable relationships across G, E, M)
- Scale-up component traits (integration of G x E x M)
- Assess the value of traits in complex environments (simulations of G x E x M)

#### Part I – Multi-scale approach

Dissecting complex traits to work with stable relationships up to the crop level











Monocot : period of linear expansion

Possibility to follow leaf expansion rate with a 15 minutes definition

Experimental set-up for 360 plants together



Ben Haj Salah & Tardieu 1995



#### Leaf expansion in Maize under drought conditions

- Instantaneous response of leaf expansion to an environmental stress



### Leaf expansion in Maize under drought conditions

- Instantaneous response of leaf expansion to an environmental stress
- Under water deficit, the LER time course is accounted by 2 major stress :
- . evaporative demand (VPD) only during day time

 $LER = (T-T_0) (a - bVPD_{fac})$ 



### Leaf expansion in Maize under drought conditions

- Instantaneous response of leaf expansion to an environmental stress
- Under water deficit, the LER time course is accounted by 2 major stress :
- . evaporative demand (VPD) only during day time

 $LER = (T-T_0) (a - bVPD_{fac})$ 

**. leaf predawn potential (ψ)** Decline of night values

 $\mathsf{LER} = (\mathsf{T}\text{-}\mathsf{T}_0) (\mathsf{a} - \mathsf{c} \Psi)$ 

Time course modelled by the sum

LER =  $(T-T_0)$  (a - bVPD<sub>fa</sub> -c  $\Psi$ )



#### Leaf expansion in Maize under drought conditions Response to temperature and soil and air water deficits



1 genotype → 1 set of parameters of response Curves (parameter `indep.' of env.)

Reymond et al. 2003 Plant Phy

# Modelling the effects of the genetic variability – Example: Leaf expansion rate in maize

![](_page_15_Figure_1.jpeg)

1 genotype → 1 set of parameters of response curves (parameter `indep.' of env.)

Reymond et al. 2003 Plant Physiology 131:664-675.

![](_page_15_Picture_4.jpeg)

#### Leaf expansion in maize under drought conditions QTL related to environment responses

#### QTLs of leaf length

![](_page_16_Figure_2.jpeg)

QTLs of leaf length were not stable among experiments

#### Leaf expansion in maize under drought conditions QTL related to environment responses

![](_page_17_Figure_1.jpeg)

QTLs of maximum elongation rate (response to temperature)

![](_page_17_Figure_3.jpeg)

QTLs of leaf length were not stable among experiments

A QTL co-location for slope *a* in three populations 21

#### Maize crop model – APSIM

![](_page_18_Figure_1.jpeg)

Chenu, Porter, Martre, Basso, Chapman, Ewert, Bindi, Asseng. Contribution of crop models to adaptation in wheat. Invited for submission in *Trends in Plant Science* 

Holzworth, Huth, deVoil, Zurcher, Herrmann, McLean, Chenu, et al. (2014) APSIM – Evolution towards a new generation of agricultural systems simulation. *Environmental Modelling & Software* 62:327-350.

### Multi-scale model - Integration of G x E x M interactions

![](_page_19_Figure_1.jpeg)

#### **Test of the model**

| Exp.   | Location                     | Sowing date   | Treatment     | Radiation     | Rain | Temperature | VPD <sub>air-meristem</sub> |
|--------|------------------------------|---------------|---------------|---------------|------|-------------|-----------------------------|
|        |                              |               |               | $(MJ m^{-2})$ | (mm) | (°C)        | (kPa)                       |
| GR92ap | Grignon, North of France     | April 27,1992 | control       | 21.1          | 62   | 15.6        | 1.098                       |
| GR92ap | Grignon, North of France     | April 27,1992 | water deficit | 21.1          | 0    | 15.6        | 1.111                       |
| MP94jl | Montpellier, South of France | July 19, 1994 | control       | 20.7          | 30   | 24.8        | 2.551                       |
| MP94jl | Montpellier, South of France | July 19, 1994 | water deficit | 20.7          | 30   | 24.8        | 2.66                        |
| MP95ma | Montpellier, South of France | May 16, 1995  | control       | 22.7          | 39   | 20          | 1.49                        |
| MP95jn | Montpellier, South of France | June 20, 1995 | control       | 23.9          | 13   | 24          | 1.95                        |
| MP95jn | Montpellier, South of France | June 20, 1995 | water deficit | 23.9          | 13   | 24          | 2.054                       |
| MP95jl | Montpellier, South of France | July 10, 1995 | control       | 21.6          | 88   | 24.7        | 2.066                       |
| MP95jl | Montpellier, South of France | July 10, 1995 | water deficit | 21.6          | 88   | 24.7        | 2.086                       |
| MA97ma | Mauguio, South of France     | May 14, 1997  | control       | 19.1          | 151  | 19.5        | 1.359                       |
| MA97jn | Mauguio, South of France     | June 18, 1997 | control       | 21.3          | 65   | 22          | 1.596                       |
| MA98ma | Mauguio, South of France     | May 20, 1998  | control       | 23            | 47   | 21.1        | 1.7                         |

- 1 situation => Parametrisation of the model
- 11 situations => Test of the model

![](_page_20_Picture_4.jpeg)

#### Test of the model

![](_page_21_Figure_1.jpeg)

#### **QTL** network

![](_page_22_Figure_1.jpeg)

Chenu et al (2008) PCE 31:378-391. Chenu et al (2009) Genetics 183:1507-1523.

#### Evaluation of the effect on yield in Sete Lagoas - Brazil

![](_page_23_Figure_1.jpeg)

- Cross-over interactions for yield
- Genetic variability simulated highly varies across env.

![](_page_23_Figure_4.jpeg)

Chenu et al. Genetics 2009

#### Evaluation of the effect on yield in Sete Lagoas - Brazil

![](_page_24_Figure_1.jpeg)

63

### Estimation of the yield impact of organ-level QTL

![](_page_25_Figure_1.jpeg)

The effect of single QTLs with similar effect on leaf growth may have substantially different effects on yield in different environments

Chenu et al (2009) Genetics 183:1507-1523.

![](_page_25_Picture_4.jpeg)

### II - Evaluating the value of traits

![](_page_26_Figure_1.jpeg)

#### **APSIM-wheat in Australia**

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

# Trait value in a very variable environment (drought) - Environment characterization -

![](_page_28_Figure_1.jpeg)

# Trait value in a very variable environment (drought) - Environment characterization -

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

#### **APSIM-wheat in Australia**

![](_page_30_Figure_1.jpeg)

#### Impactful traits/parameters for wheat in Australia

![](_page_31_Figure_1.jpeg)

Trait value +/- 20% of the reference value

Casadebaig et al. 2016 Plos One

#### Trait value in a very variable environment (drought)

![](_page_32_Figure_1.jpeg)

Casadebaig et al. 2016. Plos One

![](_page_33_Picture_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

#### **Trait 3- Quicker root growth rate**

![](_page_36_Picture_1.jpeg)

# Root growth rate in wheat varies from 0.8 to 1.8 mm °Cd<sup>-1</sup>

(Kirkegaard and Lilley 2007 and 2011; Forrest et al. 1985; Barraclough 1984...)

![](_page_36_Picture_4.jpeg)

#### Value of traits in target environments

#### How variability in root traits impacts yield in the Wheatbelt?

![](_page_37_Figure_2.jpeg)

#### Veyradier, Chritopher & Chenu, 2013

![](_page_37_Picture_4.jpeg)

#### Genetic controls for Better occupancy at depth (Trait 2)

**Phenotypic variability** - Better occupancy at depth -(rhizotron - plants at flowering)

![](_page_38_Picture_2.jpeg)

**Proxy trait** (Seedling root angle)

Hartog SeriM82

![](_page_38_Picture_5.jpeg)

Manschadi A M, et al (2008) Plant and Soil Christopher et al (2013) TAG 126:1563

![](_page_38_Picture_7.jpeg)

#### Genetic controls for Better occupancy at depth (Trait 2)

![](_page_39_Figure_1.jpeg)

#### Genetic controls for Better occupancy at depth (Trait 2)

![](_page_40_Figure_1.jpeg)

#### Involvement of roots in staygreen

![](_page_41_Figure_1.jpeg)

#### Phenotyping for staygreen

![](_page_42_Picture_1.jpeg)

Christopher et al (2014) Functional Plant Biology.

![](_page_42_Picture_3.jpeg)

#### Involvement of roots in staygreen

![](_page_43_Figure_1.jpeg)

Christopher et al (2013) TAG 126:1563 Christopher et al (in preparation)

![](_page_43_Picture_3.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Picture_1.jpeg)

#### Whole-plant / Crop modelling for:

- Identification of traits of interest (e.g. wheat root architecture) with if possible reduced/removed context dependency (i.e. stable across environments, genetic background)
- Scaling up the impact of traits & gene/QTL on more integrated traits (e.g. yield) in various environmental situations (e.g. organ-level QTL in maize)
- Characterisation of the plant environment to unravel the GxE interactions (e.g. select for genotype better adapted to the target population of environments).
- Linkage with breeding models to fix more efficiently interesting genes and traits (e.g. QUGene)
- Test of the impact of genotype, management, future climatic scenarios and aid creation of future varieties, and identification of 'best' associated management

![](_page_45_Picture_8.jpeg)

### Acknowledgement

#### Modelling

G. Hammer (QAAFI)
S. Chapman (CSIRO)
B. Zheng (CSIRO)
M. Veyradier (DAFF)
A. Doherty (DAFF)
G. McLean (DAFF)
P. Casadebaig (INRA)

**Root - staygreen** J. Christopher (QAAFI)

#### Leaf elongation

F. Tardieu (INRA) C. Weckler (INRA)

![](_page_46_Picture_6.jpeg)

Grains Research & Development Corporation

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_46_Picture_12.jpeg)