19-22 September 2016, Avignon

Using Computational Fluid Dynamics to analyse the CO₂ transfers in naturally ventilated greenhouses Molina-Aiz F.D.^a, Norton T.^{b,c}, López A.^a, Reyes-Rosas A.^a, Moreno M.A.^a, Marín P.^a, Espinoza K.^a and Valera D.L.^a

 ^c Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria- CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain
 ^b University of Leuven, Division Animal and Human Health Engineering. Kasteelpark Arenberg 30 - box 2456. 3001 Leuven, Belgium.
 ^c Harper Adams University, Engineering Department. Shropshire, Newport, UK

KU LEUVEN

Harper Adams University

19-22 September 2016, Avignon

Introduction

Greenhouse microclimate is characterised by the four main factors that affect crop development: solar radiation, air temperature and humidity and CO₂ concentration.

Classic climate models developed for control purposes, based in the energy and mass balances inside the greenhouse, suppose the homogeneity of these parameters.

19-22 September 2016, Avignon

Introduction

However, the great dimensions of modern commercial greenhouses generate differences in the values of these parameters that can affect the development of plants, resulting in differences of productivity, water consumption or heating requirements.

UNIVERSIDAD DE ALMERÍA

HORTIMODEL2016

19-22 September 2016, Avignon

Introduction

Great differences were observed in values of this parameters inside greenhouses.

50

45

40

Temmperature [^oC]

7ºC

19-22 September 2016, Avignon

Introduction

As consequence of the necessity of knowledge of the distribution of air temperature, humidity and CO_2 , Computational Fluid Dynamic software began to be used at the end of the last century.

19-22 September 2016, Avignon Introduction

The use of the CFD technique to simulate greenhouses microclimate requires the modelling of the effect of plants in the transport of energy, water vapour and CO₂.

Haxaire (1999) included the effect of resistance of plants to the air movement using a drag coefficient C_d characterising a tomato crop.

19-22 September 2016, Avignon Introduction

Boulard and Wang (2002) simulated crop transpiration inside a tunnel greenhouse customising the CFD program to include models of crop heat exchanges and global solar radiation.

Fig. 7. Simulated average (on the diurnal period) solar radiation distribution in E–W oriented tunnel on 21 March under clear weather conditions. The outside average solar radiation was 196 W m⁻². The unit of solar radiation is in W m⁻².

Computers and Electronics in Agriculture 34 (2002) 173–190 www.elsevier.com/locate/compug

Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel

T. Boulard ^{a,*}, S. Wang ^b ^{*} Unité Plantes et Systèmes Horticoles, I.N.R.A., Site Agropare, 84914 Avignon, Cedex 9, France ^b Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Puilnan, WA 20164-6120 USA

19-22 September 2016, Avignon Introduction

Fatnassi *et al.* (2002-2006) also incorporated the sensible and latent heat exchanges between plants and air inside greenhouse including in the CFD software programed user-defined functions (UDF).

Simulation of Air Flux and Temperature Patterns in a Large Scale Greenhouse Equipped with Insect Proof Nets

H. Fatnassi*, T. Boulard** and L. Bouirden*

- * Laboratoire de Thermodynamique Faculté des Sciences Université Ibn Zohr BP 28/S Agadir Maroc
- ** INRA Unité PSH Agroparc, Domaine Saint Paul, 84914 Avignon Cedex 9, France

Biosystems Engineering (2006) **93** (3), 301–312 doi:10.1016/j.biosystemseng.2005.11.014 SE—Structures and Environment Available online at www.sciencedirect.com

Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics

H. Fatnassi; T. Boulard; C. Poncet; M. Chave

INRA-URIH, 400, route des Chappes, BP 167, 06903 Sophia Antipolis, France; e-mail of corresponding author: boulard@sophia.inra.fr

(Received 29 March 2005; accepted in revised form 25 November 2005; published online 2 February 2006)

Fig. 13. Air humidity field in $g kg^{-1}$ within the greenhouse for the configuration with open windward and side openings and with anti-Thrips nets on the vents (inside horizontal line refers to crop height)

19-22 September 2016, Avignon Introduction

Roy *et al.* (2014) also programed an UDF to include a photosynthesis model (Thornley, 1976) to compute the plants absorption of CO₂ inside a greenhouse with CO₂ supply.

Experimental and CFD Results on the CO₂ Distribution in a Semi Closed Greenhouse

- J.C. Roy¹, J.B. Pouillard², T. Boulard², H. Fatnassi² and A. Grisey³
- ¹ Institut FEMTO-ST, UMR 6174, Université de Franche-Comté,
- 2, Avenue Jean Moulin, 90000 Belfort, France
- ² INRA-TEAPEA, 400, Route des Chappes, PB 167, Sophia Antipolis, 06903 France
- ³ CTIFL, Centre de Balandran, 751, Chemin de Balandran, 30127 Bellegarde, France

19-22 September 2016, Avignon Introduction

The dynamic evolution of greenhouse microclimate includes energy transfers (convection, conduction, radiation and heat storage) and mass transfers (air, water vapour and CO₂) between different elements composing a complex system: a fluid being a mixture of gases, greenhouse cover, insect-proof screens, soil and plants.

19-22 September 2016, Avignon

Objective

The objective of the present work was to develop and validate a bi-dimensional CFD model to simulate the plants photosynthesis inside a naturally ventilated *Almería*-type greenhouse.

To include photosynthesis in the numeric model a UDF was programed.

19-22 September 2016, Avignon

Materials and methods

Experimental setup

Experimental measurements were carried out in a five spans Almeria type greenhouse with a *"raspa y amagado"* structure (with pitched roof), the most widely used in the province of Almería.

The experimental greenhouse (S_c =1850 m² & V_{inv} =4770 m³) was located on the University of Almería's Campus (latitude: 36° 50', length: 2° 23', altitude: 2 m).

19-22 September 2016, Avignon **Materials and methods**

This greenhouse was equipped with two side openings and two roof openings perpendicular to the prevailing Levante winds from northeast.

Roof vent openings S_{VR} = 38.4 m² (2%)

UNIVERSIDAD DE ALMERÍA

19-22 September 2016, Avignon

Inside air temperature T_i and absolute humidity x_i were measured at 6 locations below the two roof openings.

19-22 September 2016, Avignon

Sensors installed in zones 1 & 2

1 – psychrometric units inside radiation shield; 2 & 3 – pyranometers and quantum sensors; 4 – 3D sonic anemometer; 5 – dataloggers; 11 – thermistors; 12 – heat flux sensor.

19-22 September 2016, Avignon
Photosynthesis

The photosynthetic assimilation P_c and transpiration rates E_T of plants were measured with a portable sensor LCi Photosynthesis System.

The system also provides measures of PAR radiation and leaf temperature T_p (by energy balance).

Sensors installed in the greenhouse

ISHS ITORITIVI					
	19-2	22 September 201	6, Avignon	Ζ	
stalled ir	the gree	nhouse		\leq	
Sensor	Manufacturer	Ranae	Accuracy	RS	
5011501	Munujucturer	nunge	needitacy	Ě	
12 x CS215		5 °C -40 °C	±0.4 °C	X	
campbell Scient		10-90%	±2%	D	
CD1110 puranemeter	Barcelona, Spain	250 1100 nm	+ 504		
SF1110 pyranometer		550-1100 IIII	1370		
tio NR-Lite f +	Kipn & Zoven B 7, De ft, Jetherlands	+ 000 V m ⁻²	±5%	\mathbf{P}	
Letacherm 100K6A thermistor	Leasurement Special les, Inc., Salway, Ireland	−5 °C-95 °C	±0.49 °C	<u>S</u>	
TCAV thermocouple	Campbell Scientific Spain S.L.	–40 °C-375 °C	±1.5 °C	R	
OMEGA® OS540	Omega Engineering Inc., Stanford, USA	–20 °C-420 °C	±2%		
HFP01	Hukseflux Thermal Sensors B.V., Delft, The Netherlands	$\pm 2000 \text{ W m}^{-2}$	-15 +5%		
6 × Windsonic 2D	Gill Instrument LTD, Lymington, Hampshire, UK	0-60 m s ⁻¹	±2% & ±3°	PAUR . VILL	
		0-30 m s ⁻¹	±0.04 m s ⁻¹		
2 × CSAI 3 3D	Campbell Scientific Spain S.L.	±0.026 °C			
LC: SD concor	ADC Bio Scientific Ltd.,	0-75 mbar (H ₂ 0)	+ 20/		
TCI-2D 2611201	Hoddsdon, UK	0-2000 ppm	±290		
Betatherm 100K6A thermistor	Measurement Specialties, Inc., Galway, Ireland	–5 °C-95 °C	±0.49 °C		
TESTO® 445	Testo S.A., Cabrils, Spain	0-10000 ppm	± 50 ppm		
Cup anemometer		0-78 m s ⁻¹	±5%		
Vane	Davis Instrument Corp., Hayward, USA	0-360°	±7°		
HOBO® Pro RH-Temp		–20 °C-70 °C	±0.3 °C		
H08-032-08	Unset Computer Corp., Pocasset, USA	0-100%	±3%		
	Sensor Sensor 12 × CS215 12 × CS215 SP1110 pyranometer GIONEGA® OS540 ITCAV thermocouple OMEGA® OS540 ITESTO® 05540 CUP anemometer Sensor ICCISD sensor ICCISD sensor Sensor ICCISD sensor ICCISD sensor ICCISD sensor ICCISD sensor ICCISD sensor ICCISD sensor ICCISD sensor ICCISD sensor	NECLACION 19-219-2SensorManufacturer12 × CS215Campbell Scientific Spain S.L., Barcelona, SpainSP1110 pyranometerCampbell Scientific Spain S.L., Barcelona, SpainNRP-Lite of the X-20 and y of the	IPOPRIPTIVICUPULATION COLSPANSION INTERPENDENT INTERP	1100101110000000000000000000000000000	

19-22 September 2016, Avignon

Numerical model

The greenhouse ridge was orientated northwest-southeast, practically perpendicular to the northeast *Levante* wind, and the structure had a sufficiently symmetrical shape to be simulated in two dimensions.

19

UNIVERSIDAD DE ALMERÍA

HORTIMODEL2016

19-22 September 2016, Avignon

Numerical model

Air velocities measured by the three anemometers of each openings were very similar showing the symmetric airflow.

19-22 September 2016, Avignon

Numerical model

Airflow, temperature, humidity and CO₂ distributions were simulated inside the Almería greenhouse with the CFD commercial package ANSYS Fluent® v16.2.

Invernadero Case 1 Suelo Ts32.5 File Mesh Define Solve Ada	Perfil T Qv -469.8 SIMETRY CO2 LAI 0.29 DENSITY Fluen pt Surface Display Report Parallel View Help	t@stic2005 [2d, pbns, spe, ske] — —	σ×
💼 📴 🕶 🛃 🕶 🞯 🞯 🗄 🖸	🗣 Q € 🗡 🔍 🤼 🖪 ▾ 🗆 ▾ 🛛 🕫		
🍓 Setup	Cell Zone Conditions	1: Mesh ~	
General 	Zone are_exterior		ANSYS R16.2 Academic
Cell Zone Conditions Conditions Dynamic Mesh Defense Values	invernadero invernadero_auxiliar plantas		
Solution Solution Solution Methods Solution Controls Controls Control			
Run Calculation Retries Results Graphics Animations In Proceedings			
Reports	Phase Type ID mixture solid 3		
	Edit Copy Profiles Parameters Operating Conditions	Mesh ANSYS Fluent Release 16.2 (2d, p	Sep 12, 2016 obns, spe, ske)
	Display Mesh Porous Formulation Superficial Velocity O Physical Velocity	301 2D wall faces, zone 26, binary.301 2D wall faces, zone 46, binary.30 2D jump faces, zone 27, binary.30 2D jump faces, zone 28, binary.20 2D jump faces, zone 29, binary.	^

19-22 September 2016, Avignon

Numerical model

The model included the experimental greenhouse and a neighbouring greenhouse in a domain of 160 × 25 m.

23

HORTIMODEL2016

19-22 September 2016, Avignon

Numerical model

In the zone of the vent openings and around the crop, where the airflow description was more important, a higher grid density was used.

Parameters	
Domain size	160 m × 25 m
Element type	triangular & rectangular
Minimum elements size in the domain	0.005 m
Maximum elements size in the domain	0.5 m
Minimum orthogonal quality	0.45
Maximum orthogonal skew	0.37
Maximum aspect ratio	5.31
Cells number	156 693

19-22 September 2016, Avignon

Numerical model

In the windward limit of the domain a velocity inlet boundary condition was used programing an UDF to include velocity, turbulent dissipation rate and temperature profiles.

4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

	Boundary	Condition
	Windward boundary:	Velocity inlet
	Wind speed: profile (UDF , Molina-Aiz et al., 2016)	$v(y) = \frac{v^*}{K_{VC}} ln\left(\frac{y+y_0}{y_0}\right)$
	Von Kármán constant:	K _{VC} =0.42
	Ground roughness height	y ₀ =0.015 (m)
Ē	Turbulent Kinetic Energy: constant (UDF)	$\kappa=rac{ u^{*2}}{\sqrt{C_{\mu}}}$
	Parameter of the turbulent model:	C _µ =0.09
	Turbulent Dissipation Rate: profile (UDF)	$\varepsilon(y) = \frac{v^{*3}}{K(y+y_0)}$
	Temperature: profile (UDF)	$T(y) = T_0 - \frac{T^*}{K_{VC}} ln\left(\frac{y+y_0}{y_0}\right)$
1		

19-22 September 2016, Avignon

Materials and methods

Insect-proof screens

The insect-proof screens were modelled with the Dupuit-Forchheimer equation, throughout the porous jump model of the CFD software:

$$\frac{\partial P}{\partial x} = -\left\{\frac{\mu}{\alpha}u_x + C_2\frac{1}{2}\rho|u_x|u_x\right\}$$

Roof vent openings

10×20 thread cm⁻² porosity φ = 0.34 **Side openings**

10×16 thread cm⁻² porosity φ = 0.39

19-22 September 2016, Avignon Materials and methods

Insect-proof screens

Permeability K_p and the inertial factor Y were obtained from measurements in a wind tunnel (Molina-Aiz et al., 2009).

 $\frac{\partial P}{\partial x} =$ $\begin{pmatrix} Y \\ K_p^{1/2} \end{pmatrix} \rho |u_x| u_x \\ K_p^{1/2} \end{pmatrix}$ Inertial factor $K_{\mathcal{D}}$ Permeability

19-22 September 2016, Avignon

Materials and methods

Roof

Insect-proof screens	
Greenhouse openings	
Porosity, φ_{is}	

Measured values 0.394 0.341 Thread density, ρ_{is} (threads cm⁻²) 10.2×16.3 9.9×19.8 Porous size (length × height), $L_{is} \times H_{is}$ (µm) 233.0×741.3 337.2×694.1 271.9 278.2 Thread diameter, D_{is} (µm) 6.92×10^{-10} 2.60×10^{-9} Permeability, K_n (m²) Inertial factor, Y 0.193 0.254 Values in the CFD porous jump model 567.3×10^{-6} 371.3×10^{-6} Thickness, e_{is} (m) 💶 Porous Jump Face permeability: $\alpha = K_p$ (m²) 6.92×10^{-10} Zone Name Pressure-Jump coefficient : $C_2 = 2Y/K_n^{1/2}$ (m⁻¹) 14673.5

Side

 \times

19-22 September 2016, Avignon Materials and methods

Modelling of the canopy

The effect of aerodynamic resistance produced by the airflow through the crop canopy was modelled as a porous media (Wilson and Shaw, 1977):

$$\frac{\partial P}{\partial x} = -C_d L_{ADr} \rho u_x^2$$

 C_d canopy drag coefficient L_{ADr} crop leaf area density (m²·m⁻³) V_x air velocity (m²·s⁻¹)

Modelling of the canopy

Measured values	
Plant leaf area, a _p (m²)	0.2175
Distance between plant in the row, d _R (m)	0.5
Height of plants, h _p (m)	0.4
Gap between the rows, g _R (m)	1.2
Width of row, w _R (m)	0.3
Number of row, n _R	7
Leaf area index, L _{AI} (m ² _{leaf} m ⁻² _{ground})	0.29
Leaf area density, L _{AD} (m ² _{leaf} m ⁻³)	0.72
Tomato drag coefficient, C _d	0.25
Values included in the CFD model	
Leaf area index inside the row, L _{AIr} (m ² m ⁻² _{row})	1.45
Leaf area density inside the row, L _{ADr} (m ² m ⁻³ _{row})	3.63
Viscous resistance: C ₁ (m ⁻²)	0
Inertial resistance: C ₂ =2C _D L _{ADr} (m ⁻¹)	1.81

constant

constant

 \sim

Inertial Resistance

Alternative Formulation

Direction-2 (1/m) 1.81

19-22 September 2016, Avignon

19-22 September 2016, Avignon

Numerical model

Ground surface and the plastic cover of the greenhouse were modelled as wall boundary conditions using values of measured temperatures.

Parameter	Symbol	Units	Day 1	Day 2
Outside temperature at 4 m height	To	(ºC) [(K)]	17.5 [290.7]	18.3 [291.5]
Outside wind speed at 4 m	v _R	(m s ⁻¹)	2.57	5.98
Outside H ₂ O mass fraction	X ₀	(kg kg ⁻¹)	0.0065	0.0048
Outside CO ₂ mole fraction	Co	(mol mol ⁻¹)	0.000398	0.000409
Outside solar radiation	R _{So}	(W m ⁻²)	763	825
Inside solar radiation	R _{Si}	(W m ⁻²)	556	632
PAR measured at the leaves	Q _{PARL}	(µmol m ⁻² s ⁻¹)	790	837
Solar radiation absorbed by the crop	QahC	(W m ⁻² _{leaf})	132.7	140.7
Greenhouse cover temperature	T _c	(ºC) [(K)]	21.7 [294.9]	21.1 [294.3]
Soil temperature in the area without crop	T _{s-wc}	(ºC) [(K)]	32.5 [305.7]	27.9 [301.1]
Soil temperature in the area with crop	T _{s-c}	(ºC) [(K)]	30.1 [303.3]	26.6 [299.8]
Outside soil surface temperature	T _{so}	(ºC) [(K)]	25.1 [298.3]	23.8 [297.0]
Transpiration measured with LCi sensor	EL	(mol m ⁻² $_{leaf}$ s ⁻¹)	4.71×10 ⁻³	3.88×10^{-3}
Transpiration source of H ₂ O in the model	S _{H20}	(kg m ⁻³ s ⁻¹)	3.08×10 ⁻⁴	2.54×10 ⁻⁴
Leaf temperature measured with the sensor	TL	(ºC)	35.8	31.5
Sensible heat flux	S _h	(W m ⁻³)	-469.8	-275.6

19-22 September 2016, Avignon

Numerical model

Crop transpiration E_L was modelled as a constant source of water vapour S_{H20} equal to the values measured experimentally with the LCi sensor in the leaves of tomato plants.

A State	h2o sources		×
		Number of h2o sources 1]
	1. (kg/m3-s)	constant ~	^

19-22 September 2016, Avignon

Numerical model

The sensible heat exchange was simulated as a constant volumetric heat source, computed as the difference between the radiation absorbed by the crop measured with the LCi sensor Q_{abC} and the latent heat removed by transpiration (Monteith and Unsworth 2013):

$$S_h = (Q_{abC} - E_L \lambda_{vm}) L_{ADr} (W m^{-3})$$

 E_L (mol_{H20} m⁻²_{leaf} s⁻¹) measured crop transpiration. L_{ADr} (m²_{leaf} m⁻³_{row}) leaf area density in the plants rows. λ_{vm} (J mol⁻¹) molar latent heat of vaporization of water.

19-22 September 2016, Avignon

Numerical model

The ANSYS Fluent® solver computes the mass fractions of carbon dioxide in the air Y_{CO2} at each cell of the model domain solving the convection-diffusion equation for the CO₂ (ANSYS 2013):

$$\frac{\partial}{\partial t}(\rho Y_{c02}) + \nabla \cdot (\rho \vec{v} Y_{c02}) = -\nabla \cdot \vec{J}_{c02} + S_{c02}$$

Canopy photosynthesis rate P_{cg} was calculated in the UDF using the photosynthesis model of Acock (Acock et al., 1976) modified by Nederhoff and Vegter (1994b):

$S_{CO2} = -P_{cCFD} = -P_{cCFD}$	$\frac{L_{ADr}}{L_{AI}1000} \left[\frac{g}{kg}\right] 3600 \left[\frac{s}{h}\right]$	$\left(R'-P_{cg}\right)\left(\log s^{-1}m^{-3}row\right)$
	Co2 sources	X Number of an 2 or more than
	1. (kg/m3-s)	udf cell_CO2_source ~

19-22 September 2016, Avignon

Numerical model

Canopy photosynthesis rate was calculated in the UDF using the photosynthesis model of Acock (Acock et al. 1971 & 1976) modified by Nederhoff and Vegter (1994b):

$$P_{cg} = \frac{\propto_c J_0 \tau_c C'_{B_{000}[^{\circ}/h]}}{\propto_c J_0 + \tau_c C'} (g CO_2 h^{-1} m^{-2}_{ground area})$$

The light use efficiency of the plant canopy and the conductance of CO_2 were (Nederhoff and Vegter 1994b):

$$\alpha_{c} = \alpha_{L} \frac{1 - \exp(-KL_{AI})}{1 - m} (g CO_{2} J^{-1})$$

$$\tau_{c} = \frac{a_{A}}{b_{A} K} ln \left(\frac{b_{A} S_{0} K + (1-m)}{b_{A} S_{0} K exp(-KL_{AI}) + (1-m)} \right) (m \ s^{-1})$$

K=0.94, α_L =8.6×10⁻⁶ (g CO₂ J⁻¹), a_A =8.5×10⁻⁵ (m⁻³ J⁻¹), b_A =0.021 (m² s J⁻¹) m=0.1 (Acock *et al.*, 1978; Nederhoff and Vegter, 1994a).

19-22 September 2016, Avignon

Results and discussion

Airflow patterns

A good agreement can be observed between the simulated airflow and the velocities measured in the greenhouse openings with the anemometers.

ANSYS Fluent Release 16.2 (2d, pbns, spe, ske)

19-22 September 2016, Avignon

Results and discussion

Airflow patterns

Outside air entered the greenhouse through the windward side openings exiting by the two roof vents.

19-22 September 2016, Avignon

Results and discussion

Airflow patterns

In both simulations, a vortex was observed between the leeward side wall and the road, located at 2.2 m of the wall.

As consequence of this vortex, air entered and exited through the leeward side vent with a low velocity.

19-22 September 2016, Avignon

Results and discussion

Temperature distributions

The simulated temperature distributions show the entrance of outside cold air by the windward side opening.

19-22 September 2016, Avignon

Temperature distributions

Results and discussion

The warm air exited the greenhouse through the two roof vents, observing the higher temperatures below the leeward roof opening located in the fourth span.

19-22 September 2016, Avignon

Temperature distributions

Results and discussion

Due to the little effect of the plant cooling, resulting of the low crop development (L_{AI} =0.29 m² m⁻²) and the reduced surface occupied in the greenhouse (35% of the ground surface), inside air was until 10 °C hotter than outside air.

19-22 September 2016, Avignon

Temperature distributions

Results and discussion

The greater temperature of the leeward part of the greenhouse, produced by the lower ventilation, was observed (experimentally and with CFD simulations) in a previous work (Molina-Aiz et al., 2004) in the same experimental greenhouse but with only a central roof vent.

Contours of Total Temperature (k)

19-22 September 2016, Avignon

Humidity distributions

Results and discussion

Simulations showed an increase of humidity in the area occupied by the crop as consequence of the plants transpiration included in the CFD model.

a)									RMSPI	E=13.5%
		·0.0077	·0.0079 ·0.00	072	•0.00	073 .0.0074 .0	0.0071			
		• <mark>0.0080</mark>	·0.0075 ·0.00)77	•0.00	073 ·0.0074 ·	0.0072			
b)							S		RMSP	E=9.7%
		•0.0053	3 ·0.0052 ·0.	0052	·0.0	060 .0.0060 .	0.0057			
		•0.0052	2 .0.0053 .0.0	0053	·0.0)60 ·0.0058 ·	0.0059			
0.0040	0.0046	0.0052	0.0058	0.0064	0.0070	0.0076	0.0082	0.0088	0.0094	0.0100
Contours of Mas	ss fraction of h2o							ANSYS Fluent Releas	م se 16.2 (2d, pbr	ug 30, 2016 ns, spe, ske)

Measured data the first day showed higher humidity in the windward part of the greenhouse than in the leeward part.

This humidity distribution can be produced by evaporation from the soil after irrigation.

19-22 September 2016, Avignon

Results and discussion

CO₂ distribution

Simulations of CO₂ distribution show a reduction of the concentration in the leeward part of the greenhouse where the plants absorb the gas by photosynthesis.

This reduction was very weak due to the low development of the crop at the moment of measurements (L_{AI} =0.29 m² m⁻²).

ANSYS Fluent Release 16.2 (2d, pbns, spe, ske)

19-22 September 2016, Avignon

Results and discussion

Crop photosynthesis

The great variability of measured values of photosynthesis inside the crop canopy (differences of 47.9% between rows) resulting in greater values of RMSPE (19.7-36.1%).

Contour			All								
	×		Les L	- C71 -	and and			27-5-1	Alle .		
Options Filled Odd Values Global Range Auto Range Clip to Range Draw Profiles Draw Mesh Levels 20 1 V 1	Contours of User Defined Memory User Memory 1 Min Max -17.5 -16 Surfaces Darlovento barlovento auxiliar camino_carretera carretera_superior carretera_superior carretera_superior carretera_superior	10	.3 μι	nol 1	∭ m ^{−2}	S ^{−1}	16.8	β μm	nol n	n ⁻² s	5-1
Surface Name Pattern	New Surface 🗸										
	Surface Types	-17.4	-17.2	-17.0	-16.9	-16.8	-16.6	-16.5	-16.3	-16.1	-16.0
Display	Compute Close Help										

MORTIMODEL2016

19-22 September 2016, Avignon

Results and discussion

Crop photosynthesis

These values of photosynthesis (1.6-2.8 gCO₂ m⁻²leaf h⁻¹) were similar to the values of 2.9 gCO₂ m⁻²leaf h⁻¹ measured in plants of tomato growing inside a Venlotype glasshouse by Nederhoff and Vegter (1994a).

The measured values also agreed with the net photosynthesis of 10-15 µmol m⁻²leaf s⁻¹ reported by Ayari *et al.* (2000) for tomato crop inside a four-span arched greenhouse and by Shibuya *et al.*, (2006) for tomato seedlings in a growth chamber.

19-22 September 2016, Avignon

Conclusions

From validation of the developed CFD model of a naturally ventilated Almería-type greenhouse with a tomato crop inside, we can conclude that plants photosynthesis can be simulated accurately with CFD including a user-defined function (UDF) in the numerical model.

Values of simulated net photosynthesis agree with the measured in the experimental greenhouse and with the values reported in bibliography.

Thank you

ta na na ar an hi na ta hi

1.00

100

Literature Cited

Acock, B., Hand, D.W., Thornley, J.H.M., and Warren Wilson, J. (1976). Photosynthesis in stands of green peppers. An application of empirical and mechanistic models to controlled-environment. Annals of Botany. *40*(170), 1293–1307.

ANSYS (2013). ANSYS Fluent Theory Guide. Release 15.0. ANSYS, Inc., Canonsburg (USA), 814 pp.

Ayari, O., Dorais, M., and Gosselin, A. (2000). Daily variations of photosynthetic efficiency of greenhouse tomato plants during winter and spring. J. Amer. Soc. Hort. Sci. *125*(2), 235–241.

Baeza, E.J., Pérez-Parra, J., and Montero, J.I. (2005). Effect of ventilator size on natural ventilation in parral greenhouse by means of CFD simulations. Acta Horticulturae. 691, 465–472. http://dx.doi.org/10.17660/ActaHortic.2005.691.56

Bartzanas, T., Boulard, T., and Kittas, C. (2002). Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Computers and Electronic in Agriculture. *34*, 207–221. <u>http://dx.doi.org/10.1016/S0168-1699(01)00188-0</u>

Boulard, T., and Wang, S. (2002). Experimental and numerical studies on the heterogeneity of crop transpiration in plastic tunnel. Computers and Electronic in Agriculture. *34*, 173–190. <u>http://dx.doi.org/10.1016/S0168-1699(01)00186-7</u>

Bournet, P.E., and Boulard, T. (2010). Effect of ventilator configuration on the distributed climate greenhouses: A review of experimental and CFD studies. Computers and Electronics in Agriculture. 74, 195–217. <u>http://dx.doi.org/10.1016/j.compag.2010.08.007</u>

Fatnassi, H., Boulard, T., and Bouirden, L. (2002). Simulation of air flux and temperature patterns in a large scale greenhouse equipped with insect proof nets. Acta Hortic. *578*, 329–338. <u>http://dx.doi.org/10.17660/ActaHortic.2002.578.41</u>

Fatnassi, H., Boulard, T., and Lagier, J. (2004). Simple indirect estimation of ventilation and crop transpiration rates in a greenhouse. Biosystems Eng.88(4), 467–478.http://dx.doi.org/10.1016/j.biosystemseng.2004.05.003

Fatnassi, H., Poncet, C., Bazzano, M.M., Brun, R., and Bertin, N. (2015). A numerical simulation of the photovoltaic greenhouse microclimate. Solar Energy. *120*, 575–584. <u>http://dx.doi.org/10.1016/j.solener.2015.07.019</u>

Haxaire, R. (1999). Caractérisation et modélisations des écoulements d'air dans une serre. (In French: Characterisation and modelling of air flows in a greenhouse). Ph. D. Thesis, Université de Nice Sophie Antipolis. Faculté des Sciences, France, 149 pp.

Kacira, M., Sase, S., and Okushima, L. (2004). Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Transactions of the ASAE. 47(6), 2059–2067. http://dx.doi.org/10.13031/2013.17803

Molina-Aiz, F.D., Valera, D.L., Peña, A.A., Gil, J.A., and López, A. (2009). A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosystem Eng. 104(2), 224–242. http://dx.doi.org/10.1016/j.biosystemseng.2009.06.013

Molina-Aiz, F.D., Valera, D.L., and Álvarez, A.J. (2004). Measurement and simulation of climate inside Almería-type greenhouses using Computational Fluid Dynamics. Agricultural and Forest Meteorology. *125*, 33–51. <u>http://dx.doi.org/10.1016/j.agrformet.2004.03.009</u>

Literature Cited

Molina-Aiz, F.D., Valera, D.L., Álvarez, A.J., and Madueño, A. (2006). A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient. Biosystem Eng. 93(4), 447–457. <u>http://dx.doi.org/10.1016/j.biosystemseng.2006.01.016</u>

Molina-Aiz, F.D., Norton, T., López, A., Reyes-Rosas, A., Moreno, M.A., Marín, P., Espinoza, K., and Valera, D.L. (2016). Modelling of spatial variability of CO2 inside horticultural greenhouse with Computational Fluid Dynamic. Precision Agric. 26 pp. (In press). http://dx.doi.org/10.1007/s11119-015xxxx-x

Monteith, J. L., & Unsworth, M. H. (2013). Principles of Environmental Physics Plants, Animals, and the Atmosphere. Fourth Edition. Elsevier Ltd., Oxford (UK), 401 pp.

Nederhoff, E.M., and Vegter, J.G. (1994a). Photosynthesis of stands of tomato, cucumber and sweet pepper measured in greenhouses under various CO₂ concentrations. Annals of Botany. 73(4), 353–361. <u>http://dx.doi.org/10.1006/anbo.1994.1044</u>

Nederhoff, E.M., and Vegter, J.G. (1994b). Canopy photosynthesis of tomato, cucumber and sweet pepper in greenhouses: measurements compared to models. Annals of Botany. 73(4), 421–427. http://dx.doi.org/10.1006/anbo.1994.1052

Okushima, L., Sase, S., and Nara, M. (1989). A support system for natural ventilation design of greenhouses based on computational aerodynamics. Acta Hortic. 284, 129–136. http://dx.doi.org/10.17660/ActaHortic.1989.248.13

 Ould Khaoua, S.A., Bournet, P.E., Migeon, C., Boulard, T., and Chassériaux, G. (2006). Analysis of greenhouse ventilation efficiency based on

 Computational Fluid Dynamics. Biosystems Engineering. 95(1), 83–98.
 http://dx.doi.org/10.1016/j.biosystemseng.2006.05.004

Reichrath, S., Ferioli, F., and Davies, T.W. (2000). A simple computational fluid dynamics model of a tomato glasshouse. Acta Hortic. *534*, 197–204. http://dx.doi.org/10.17660/ActaHortic.2000.534.22

Roy, J.C., Pouillard, J.B., Boulard, T., Fatnassi, H., and Grisey, A. (2014). Experimental and CFD results on the CO2 distribution in a semi closed greenhouse. Acta Hortic. *1037*, 993–1000. <u>http://dx.doi.org/10.17660/ActaHortic.2014.1037.131</u>

Shibuya, T., Tsuruyama, J., Kitaya, Y. and Kiyota, M. (2006). Enhancement of photosynthesis and growth of tomato seedlings by forced ventilation within the canopy. Scientia Hortic. 109, 218–222. http://dx.doi.org/10.1016/j.scienta.2006.04.009

Tamimi, E., Kacira, M., Choi, C.Y., and An L., (2013). Analysis of microclimate uniformity in a naturally vented greenhouse with a high-pressure fogging system. Transaction of the ASABE. *56*(3), 1241–1254. <u>http://dx.doi.org/10.13031/trans.56.9985</u>

Teitel, M. (2013). Flow through concertina-shape screens. Biosystems Engineering. *116*, 155–162. http://dx.doi.org/10.1016/j.biosystemseng.2013.07.015

Thornley, J.H.M. (1976). Mathematical models in plant physiology. Academic Press, London, UK, 331 pp.

Valera, D.L., Belmonte, L.J., Molina-Aiz, F.D., and López, A. (2016). Greenhouse agriculture in Almería. A comprehensive techno-economic analysis. Cajamar Caja Rural, Almería (Spain). 504 pp.